FINAL YEAR 2 (2015) MONITORING REPORT UT TO MARTIN'S CREEK (CONTRERAS) MITIGATION PROJECT

Cherokee County, North Carolina
DMS Project No. 92766 (Contract No. 005717)
USACE Action ID No. 2010-00961/DWR Project No. 2010-00448
SCO No. 08-07249-01

Data Collection – March-November 2015

Hiwasssee River Basin Cataloging Unit 06020002170010

SUBMITTED TO/PREPARED FOR:

North Carolina Department of Environmental Quality Division of Mitigation Services 217 West Jones Street, Suite 3000A Raleigh, North Carolina 27603

December 2015

<u>FINAL</u> <u>YEAR 2 (2015) MONITORING REPORT</u> UT TO MARTIN'S CREEK (CONTRERAS) MITIGATION PROJECT

Cherokee County, North Carolina
DMS Project No. 92766 (Contract No. 005717)
USACE Action ID No. 2010-00961/DWR Project No. 2010-00448
SCO No. 08-07249-01

Data Collection – March-November 2015

Hiwasssee River Basin Cataloging Unit 06020002170010

SUBMITTED TO/PREPARED FOR:

North Carolina Department of Environmental Quality Division of Mitigation Services 217 West Jones Street, Suite 3000A Raleigh, North Carolina 27603

SUBMITTED BY:

Axiom Environmental, Inc. 218 Snow Avenue Raleigh, North Carolina 27603

December 2015

Table of Contents

1.0	PROJECT SUMMARY	1
2.0	METHODOLOGY	
2.1	Streams	4
2.2	Vegetation	5
3.0	REFERENCES	
	Appendices	
APPE	NDIX A. PROJECT BACKGROUND DATA AND MAPS	
	Figure 1. Vicinity Map	
	Table 1. Project Components and Mitigation Credits	
	Table 2. Project Activity and Reporting History	
	Table 3. Project Contacts Table	
	Table 4. Project Baseline Information and Attributes	
APPE	NDIX B. VISUAL ASSESSMENT DATA	
	Figure 2. Current Conditions Plan View	
	Tables 5A-5D. Visual Stream Morphology Stability Assessment	
	Table 6. Vegetation Condition Assessment	
	Stream Fixed-Station Photographs	
	Vegetation Monitoring Photographs	
APPE	NDIX C. VEGETATION PLOT DATA	
	Table 7. Vegetation Plot Criteria Attainment	
	Table 8. CVS Vegetation Plot Metadata	
	Table 9. Total and Planted Stems by Plot and Species	
APPE	NDIX D. STREAM SURVEY DATA	
	Cross-section Plots	
	Longitudinal Profile Plots	
	Substrate Plots	
	Table 10a-10f. Baseline Stream Data Summary	
	Table 11a-11f. Monitoring Data	
APPE	NDIX E. HYDROLOGY DATA	
	Table 12. Verification of Bankfull Events	

1.0 PROJECT SUMMARY

The North Carolina Division of Mitigation Services (DMS) has established the UT to Martin's Creek (Contreras) Mitigation Project (Site) located in Cherokee County, just south of the town of Murphy. The Site is encompassed within 14-digit Cataloging Unit 06020002170010 of the Hiwassee River Basin (Figure 1, Appendix B and Table 4, Appendix A). Land use at the Site, prior to mitigation activities, was composed of agricultural uses, logging, grass land, single-family residences, and forested areas. Martin's Creek and its tributaries had been impaired by historical and current land management practices, which include timber harvesting, pasture, channelization, and livestock grazing. Completed project activities, reporting history, completion dates, project contacts, and project attributes are summarized in Tables 1-4 (Appendix A).

The Site is located on tributaries to Martin's Creek, which have been assigned Stream Index Number 1-49 and a Best Usage Classification of C. Site streams are listed on the NCDWQ draft 2014 and final 2012 Section 303(d) list of impaired streams due to a fair bioclassification for ecological/biological integrity and fish communities, and elevated levels of fecal coliform bacteria. The Site is located within a Targeted Local Watershed that has been identified for stream and buffer restoration opportunities (NCDMS 2008).

The Site lies within the focus area of the *Peachtree-Martins Creek Local Watershed Plan* (LWP). Goals of the LWP include working with local landowners, resource agencies, and nongovernmental groups to implement wetland and stream restoration projects that reduce sources of sediment and nutrients by restoring riparian buffers, stabilizing stream banks, and restoring natural channel geomorphology, particularly in headwater streams. The NCDMS is also placing an emphasis on projects that contribute to the restoration and protection of habitat for priority fish, mussel, snail, and crayfish species in the basin (NCDMS 2008).

The project goals will directly address stressors identified in the Peachtree-Martins Creek LWP, namely lack of riparian vegetation, channel modification, excess sediment inputs, excess nutrient inputs, and bacterial contamination as follows.

- Restore geomorphically stable stream channels within the Site;
- Restore or enhance wetlands;
- Exclude livestock from accessing project streams, wetlands, and riparian zones;
- Improve and restore hydrologic connections and achieve uplift of ecosystem functions;
- Improve water quality within the Site by reducing bank erosion, improving nutrient and sediment removal, and stabilizing stream banks;
- Restore and preserve headwater tributaries in the Peachtree-Martins Creek Watershed and the Hiwassee River; and
- Improve aquatic and terrestrial habitat by improving substrate and in-stream cover, adding woody debris, reducing water temperatures, and restoring riparian habitat.

In order to accomplish the goals of the project and contribute to the overall success of goals set forth for the greater Peachtree-Martin Creek local watershed planning area, a number of general project objectives and design objectives were identified for this project as follows.

General Project Objectives

- Utilize natural channel design concepts to restore or enhance channel profile, pattern, and dimension to reduce bank and channel profile degradation and to allow greater floodplain connectivity to aid in the dissipation of bankfull flows.
- Reduce stream bank degradation and sediment and nutrient inputs by limiting livestock access of project tributaries to crossings agreed upon between the NCDMS and the landowner.
- Further reduce sediment and nutrient inputs and stream bank instability by restoring or enhancing native riparian vegetation along a 30-foot buffer along the project reach.
- Improve channel bedform function and diversity by installing toe wood structures and grade control structures that also function to improve riffle and scour pool habitat.

Design Objectives

- Make important design decisions based on a geomorphic analyses of the Site, reference conditions, and hydraulic modeling.
- Consider field constraints and construction tolerances in order to produce a realistic design.
- Minimize disturbance to ecologically functional and physically stable areas and mimic the character of these areas to create a more natural design.
- Use native materials and minimize materials brought onsite to produce more favorable habitat for native flora and fauna, reduce compaction and onsite disturbance from material transport, and produce an aesthetically pleasing result.

The Site mitigation plan was completed in March 2010 with the final design and construction plans completed in November 2010 (Table 2, Appendix A). Project construction was completed between October 2012 and July 2013. The implemented mitigation is as follows (Figure 2, Appendix B and Table 1, Appendix A).

- 4952 Stream Mitigation Units
 - Restoring approximately 3330 linear feet of stream channel through construction of stable channel at the historic floodplain elevation.
 - Enhancing (level I) approximately 1319 linear feet of stream channel through cessation of current land use practices, installing grade control structures, repairing bank erosion, restoring proper channel dimension and profile, and planting with native forest vegetation.
 - Enhancing (level II) approximately 1953 linear feet of stream channel through cessation of current land use practices, removing invasive species, and planting with native forest vegetation.
- 0.15 Riparian Wetland Mitigation Units
 - Enhancing approximately 0.3 acres of riparian wetland by filling ditches/abandoned channels and supplemental planting.
- Planting a native woody riparian buffer (at least 30 feet in width) adjacent to restored/enhanced streams and wetlands within the Site.
- Protecting the Site in perpetuity with a conservation easement.

Stream Success Criteria

Stream restoration success criteria for the Site are based on the *Stream Mitigation Guidelines* issued in April 2003 by the USACE and NCDWQ. Success criteria for stream restoration will include 1) documentation of two bankfull events, 2) little change in the channel cross-section from as-built conditions, 3) stable longitudinal profile, 4) substrate consistency, and 5) photographic evidence of stability.

Bankfull Events

Two bankfull flow events in separate years must be documented within the 5-year monitoring period. Otherwise, stream monitoring will continue until two bankfull events have been documented in separate years.

Cross-sections

Riffle cross-sections on the restoration and enhancement reaches should be stable and should show little change in bankfull area, maximum depth ratio, and width-to-depth ratio. Riffle cross-sections should generally fall within the parameters defined for channels of the appropriate Rosgen stream type. If any changes do occur, these changes will be evaluated to assess whether the stream channel is showing signs of instability. Indicators of instability include a vertically incising thalweg or eroding channel banks. Changes in the channel that indicate a movement toward stability or enhanced habitat include a decrease in the width-to-depth ratio in meandering channels or an increase in pool depth.

Longitudinal Profile

Longitudinal profile data for the stream reach should show that bedform features are remaining stable. The riffles should be steeper and shallower than the pools, while the pools should be deep with flat water surface slopes. The relative percentage of riffles and pools should not change significantly from the design parameters.

Bed Material Analysis

Substrate materials in the restoration reaches should indicate a progression towards or the maintenance of coarser materials in the riffle features and smaller particles in the pool features.

Photo Reference Sites

Photographs will be used to evaluate channel aggradation or degradation, bank erosion, success of riparian vegetation, and effectiveness of erosion control measures subjectively. Lateral photos should not indicate excessive erosion or continuing degradation of the banks. A series of photos over time should indicate successive maturation of riparian vegetation.

Vegetation Success Criteria

Success criteria have been established to verify that the vegetation component supports community elements necessary for forest development. Success criteria for this project includes an average density of 320 planted stems per acre must be surviving in the first three monitoring years. Subsequently, 290 planted stems per acre must be surviving in year 4, and 260 planted stems per acre in year 5.

Summary information/data related to the occurrence of items such as beaver or encroachment and statistics related to performance of various project and monitoring elements can be found in tables and figures within this report's appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly the Restoration Plan) documents available on the NC Division of Mitigation Services (NCDMS) website. All raw data supporting the tables and figures in the appendices are available from NCDMS upon request.

2.0 METHODOLOGY

Monitoring of the Site's restoration efforts will be performed until agreed upon success criteria are fulfilled. Monitoring is proposed for the stream channel, riparian vegetation, and hydrology for a period of five years (Figure 2, Appendix B). Monitoring reports of collected data will be submitted no later than December of each monitoring year.

2.1 Streams

Post-restoration monitoring will be conducted for five years following the completion of construction to evaluate the effectiveness of the restoration practices. Measurements were taken using a Topcon GTS 303 total station and Recon data collector. The raw total station file was processed using Carlson Survey Software into a Computer Aided Design (CAD) file. Coordinates were exported as a text/ASCII file to Microsoft Excel for processing and presentation of data, and are not georeferenced. Pebble counts were completed using the modified Wolman method (Rosgen 1993). Monitored stream parameters include stream dimension (cross-sections), pattern (longitudinal survey), profile (profile survey), and photographic documentation. Baseline stream data can be found in Appendix D.

Several beaver dams were observed onsite in July 2015, and in response, NCDMS contracted APHIS to monitor the site for beaver. Between September 1 and September 24, 2015, six beaver were trapped and five dams were removed. APHIS will continue to monitor the Site and eliminate any beaver activity as necessary.

Bankfull Events

The occurrence of bankfull events within the monitoring period will be documented by the use of a crest gauge and photographs. One crest gauge was installed to record the highest watermark between site visits, and the gauge will be checked each Site visit to determine if a bankfull event has occurred (Figure 2, Appendix B). Photographs will be used to document the occurrence of debris lines and sediment deposition on the floodplain during monitoring site visits.

Five bankfull events were documented during monitoring year 2 (2015) for a total of eleven bankfull events during years 1 (2014) and 2 (2015).

Cross-sections

A total of 14 permanent cross-sections, 10 riffle and 4 pool, were established and will be used to evaluate stream dimension; locations are depicted on Figure 2 (Appendix B) Because riffle cross-sections are critical in determining bankfull design parameters, the number of riffle cross-sections established will generally outnumber pool cross-sections. Each cross-section will be marked on both banks with permanent pins to establish the exact transect used. A common benchmark will be used for cross-sections and consistently used to facilitate easy comparison of year-to-year data. The annual cross-section survey will include points measured at all breaks in slope, including top of bank, bankfull, inner berm, edge of water, and thalweg, if the features are present. Riffle cross sections will be classified using the Rosgen Stream Classification System.

No areas of concern or indicators of instability were observed during year 2 (2015) monitoring; therefore, stream dimension measurements are currently meeting success criteria.

Longitudinal Profile

After Site construction, approximately 4640 linear feet of longitudinal profile was completed to document baseline conditions. Longitudinal profile will be resurveyed annually for the duration of the five-year monitoring period. Measurements include thalweg, water surface, bankfull, and top of low bank. Each of these measurements will be taken at the head of each channel unit (e.g., riffle, pool) and at the maximum pool depth. The survey will be tied to a permanent benchmark.

No areas of concern or indicators of bedform instability were observed during year 2 (2015) monitoring; therefore, stream longitudinal profile measurements are currently meeting success criteria.

Bed Material Analysis

Pebble counts will be conducted annually on one permanent riffle cross-section (100-counts) at the time cross-section and longitudinal surveys are performed during the five year monitoring period. These samples will reveal changes in sediment gradation over time as the stream adjusts to upstream sediment loads.

Year 2 (2015) pebble counts indicate the maintenance of coarser materials in the measured riffle feature; therefore, bed material is currently meeting success criteria.

Photo Reference Sites

A total of 24 photographs will be used to visually document restoration success for at least five years following construction. Photographs will be taken from a height of approximately five to six feet. Photo locations will be recorded using sub-meter GPS to ensure that the same locations (and view directions) on the Site are monitored in each monitoring period.

Year 2 (2015) photo reference sites show no channel aggradation or degradation, or bank erosion. In addition, riparian vegetation is meeting success criteria based on stem counts across the Site; however, it is too early in the monitoring period to show successive maturation of riparian vegetation.

2.2 Vegetation

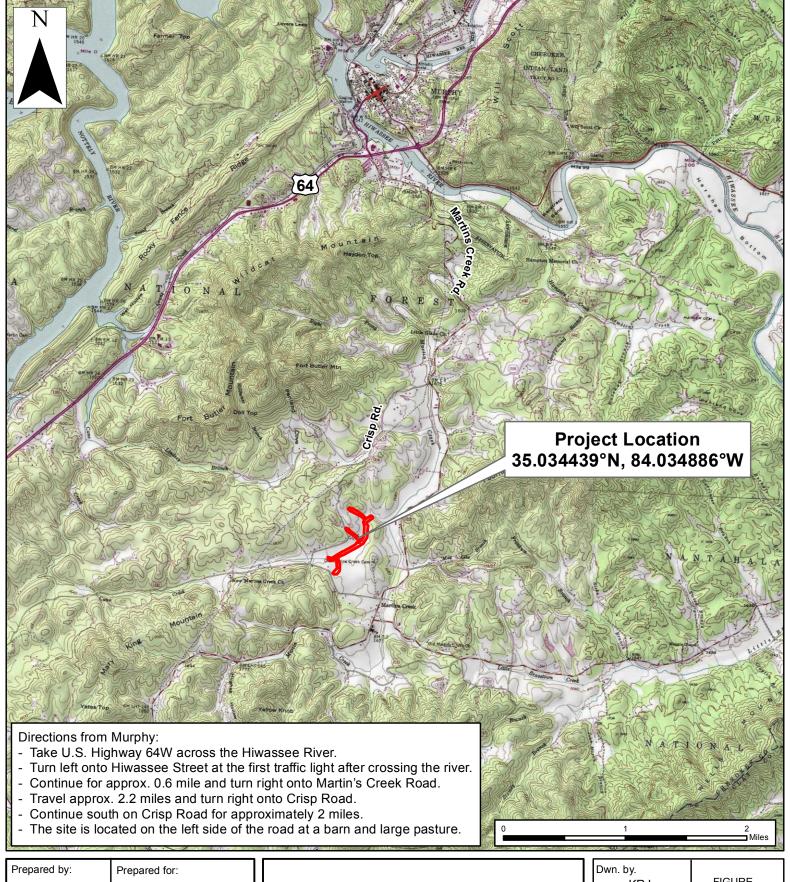
After planting was completed, an initial evaluation was performed to verify planting methods were successful and to determine initial species composition and density. Eleven sample vegetation plots (10-meter by 10-meter) were installed and measured within the Site as per guidelines established in *CVS-DMS Protocol for Recording Vegetation*, *Version 4.2* (Lee et al. 2008). Vegetation plots are permanently monumented with 6-foot metal t-posts at each corner. In each sample plot, vegetation parameters to be monitored include species composition and species density. Visual observations of the percent cover of shrub and herbaceous species will also be documented by photograph. Vegetation plot information can be found in Appendix C.

Supplemental planting occurred at the Site in early 2015 with 1800 bare root stems as follows.

300 river birch (*Betula nigra*) 300 sycamore (*Platanus occidentalis*) 300 tulip poplar (*Liriodendron tulipifera*) 300 black gum (*Nyssa sylvatica*) 300 northern red oak (*Quercus rubra*) 300 Shumard's oak (*Quercus shumardii*) **1800**

Year 2 (2015) stem count measurements indicate an average of 478 planted stems per acre (excluding livestakes) across the Site; therefore, the Site is currently meeting vegetation success criteria. In addition, all eleven individual vegetation plots met success criteria based on planted stems alone.

3.0 REFERENCES


- Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-DMS Protocol for Recording Vegetation. Version 4.2. North Carolina Department of Environmental Quality, Division of Mitigation Sevices. Raleigh, North Carolina.
- North Carolina Division of Water Quality (NCDWQ). 2012. Final North Carolina Water Quality Assessment and Impaired Waters List (NC 2012 Integrated Report Category 5, 303(d) List) (online). Available: http://portal.ncdenr.org/c/document_library/get_file?uuid=9d45b3b4-d066-4619-82e6-ea8ea0e01930&groupId=38364 [February 17, 2014]. North Carolina Department of Environmental Quality, Raleigh, North Carolina.
- North Carolina Division of Water Quality (NCDWQ). 2014. Draft 2014 NC 303(d) List-Category 5 Assessments Requiring TMDLs (online). Available:

 http://portal.ncdenr.org/c/document_library/get_file?uuid=096fb2ff-296b-4bd8-8b88-e83bb5984be6&groupId=38364 [February 17, 2014]. North Carolina Department of Environmental Quality, Raleigh, North Carolina.
- North Carolina Division of Mitigation Services and Equinox Environmental Consultation and Design (NCDMS). 2007. Peachtree-Martins Creek Local Watershed Plan (Phase3), Hiwassee River Basin, Cherokee and Clay Counties, North Carolina. October 2007 Watershed Management Plan. [Online WWW]. Available URL: http://www.hrwc.net/pmcplan/pmc plan executive summary.pdf.
- North Carolina Division of Mitigation Services (NCDMS). 2014. Annual Monitoring and Closeout Reporting Format, Data Requirements, and Content Guidance, dated February 2014. NC Department of Environmental Quality. Available online at http://portal.ncdenr.org/c/document_library/get_file?p_l_id=60409&folderId=18877169&name=DLFE-86604.pdf
- North Carolina Division of Mitigation Services (NCDMS). 2010. UT to Martin's Creek (Contreras) Mitigation Plan. NC Department of Environmental Quality. Available online at http://its.enr.state.nc.us/WebLink8/0/doc/135204/Page3.aspx
- North Carolina Division of Mitigation Services (NCDMS). 2008. Hiwassee River Basin Restoration Priorities 2008 (online). Available: http://portal.ncdenr.org/c/document_library/get_file?uuid=ea2df99d-3031-4c7b-87ea-79d56a3e4a1e&groupId=60329. North Carolina Department of Environmental Quality, Raleigh, North Carolina.
- Rosgen. 1993. Applied Fluvial Geomorphology, Training Manual. River Short Course, Wildland Hydrology, Pagosa Springs, CO.
- United States Army Corps of Engineers, United States Environmental Protection Agency, North Carolina Wildlife Resources Commission, North Carolina Division of Water Quality (USACE et al.). 2003. Stream Mitigation Guidelines.
- United States Geological Survey (USGS). 1974. Hydrologic Unit Map 1974. State of North Carolina.
- Weakley, Alan S. 2012. Flora of the Southern and Mid-Atlantic States. Available online at: http://www.herbarium.unc.edu/WeakleysFlora.pdf [September 28, 2012]. University of North Carolina Herbarium, North Carolina Botanical Garden, University of North Carolina, Chapel Hill, North Carolina.

APPENDIX A

PROJECT BACKGROUND DATA AND MAPS

- Figure 1. Vicinity Map
- Table 1. Project Components and Mitigation Credits
- Table 2. Project Activity and Reporting History
- Table 3. Project Contacts Table
- Table 4. Project Baseline Information and Attributes

Axiom Environmental, Inc.

NC Department of Environmental Quality

Division of Mitigation Services

VICINITY MAP
UT TO MARTINS CREEK (CONTRERAS)
DMS PROJECT NUMBER 92766
Cherokee County, North Carolina

Dwn. by. KRJ	FIGURE
Date: Nov. 2015	1
Project: 12.004.16	ı

Table 1. Project Components and Mitigation Credits UT to Martin's Creek (Contreras) Mitigation Site

			Mi	tigation Credit Sumr	nations		
Stı	eam		Ri	parian Wetland			Nonriparian Wetland
4	952			0.15			
				Project Componen	nts		
Station Range	Existing Linear Footage/ Acreage	Priority Approach	Restoration/ Restoration Equivalent	Restoration Linear Footage/ Acreage	Mitigation Ratio	Mitigation Credits	Comment
UT1-1 Station 00+00 to 06+02	602		Enhance I	602-54 = 548	1.5:1	365.3	Forded Crossing (54 linear feet) removed from credit
UT1-1	346		Enhance II	346	2.5:1	138.4	
UT1-1-1	106		Enhance II	106	2.5:1	42.4	
UT1-2 Station 00+00 to 02+07	141	PI	Restoration	207	1:1	207	
UT1-3	767			767-62=705	1.5:1	470	Stream under power line easement (66 linear feet)
Station 00+00 to 08+33	66		Enhance I	66	3:1*	22.0	will generate half credit and piped stream crossing (62 linear feet) removed from credit.
	1099			1014-53=961	2.5:1	384.4	Stream under two power line easements (40 and
UT1-4	40		Enhance II	40	5:1**	8	45 linear feet) will generate half credit and forded
	45			45	5:1**	9	crossing (53 linear feet) removed from credit.
UT 1 to Martin's Creek	455		Enhance II	455	2.5:1	182	
UT1 to Martin's Creek Station 00+00 to 32+74	2674	PI	Restoration	3274-53-47-51 =3123	1:1	3123	Three crossings (53, 47, and 51 linear feet) removed from credit.
Wetland Enhancement	0.3		Enhancement	0.3	2:1	0.15	Enhancement of existing riparian wetlands characterized by removal of invasive species and supplemental planting.
				Component Summa	tion		
Restoration Level	Stream	(linear footag	e)	Riparian Wetland	(acreage)		Nonriparian Wetland (acreage)
Restoration		3330					
Enhancement (Level 1)		1319					
Enhancement (Level II)		1953					
Enhancement				0.3			<u></u>
Totals		6602		0.3			<u></u>
Mitigation Units		52 SMUs		0.15 Riparian V			0.00 Nonriparian WMUs

^{*66} linear feet of stream under the power line easement is receiving a mitigation ratio of 3:1 (half credit for enhancement [level I]).

^{**85} linear feet of stream under two power line easements is receiving a mitigation ratio of 5:1 (half credit for enhancement [level II]).

Table 2. Project Activity and Reporting History UT to Martin's Creek (Contreras) Mitigation Site

Activity or Deliverable	Data Collection Complete	Completion or Delivery			
Mitigation Plan	September 2009- March 2010	March 2010			
Final Design – Construction Plans	March 2010- November 2010	November 2010			
Construction		October 2012-July 2013			
Temporary S&E Mix applied to Entire Project Site		October 2012-July 2013			
Permanent Seed Mix applied to the Entire Project Site		October 2012-July 2013			
Bare Root; Containerized; and B&B Plantings for the Entire Project Site		March 2014			
Mitigation Plan/ As-Built (Year 0 Monitoring Baseline)	April 2014	April 2014			
Year 1 Monitoring	October 2014	November 2014			
Warranty Supplemental Planting		March 2015			
Beaver/Dam Removal		September 2015			
Year 2 Monitoring	November 2015	December 2015			
Year 3 Monitoring					
Year 4 Monitoring					
Year 5 Monitoring					

Table 3. Project Contacts Table Martin's Creek II Mitigation Site

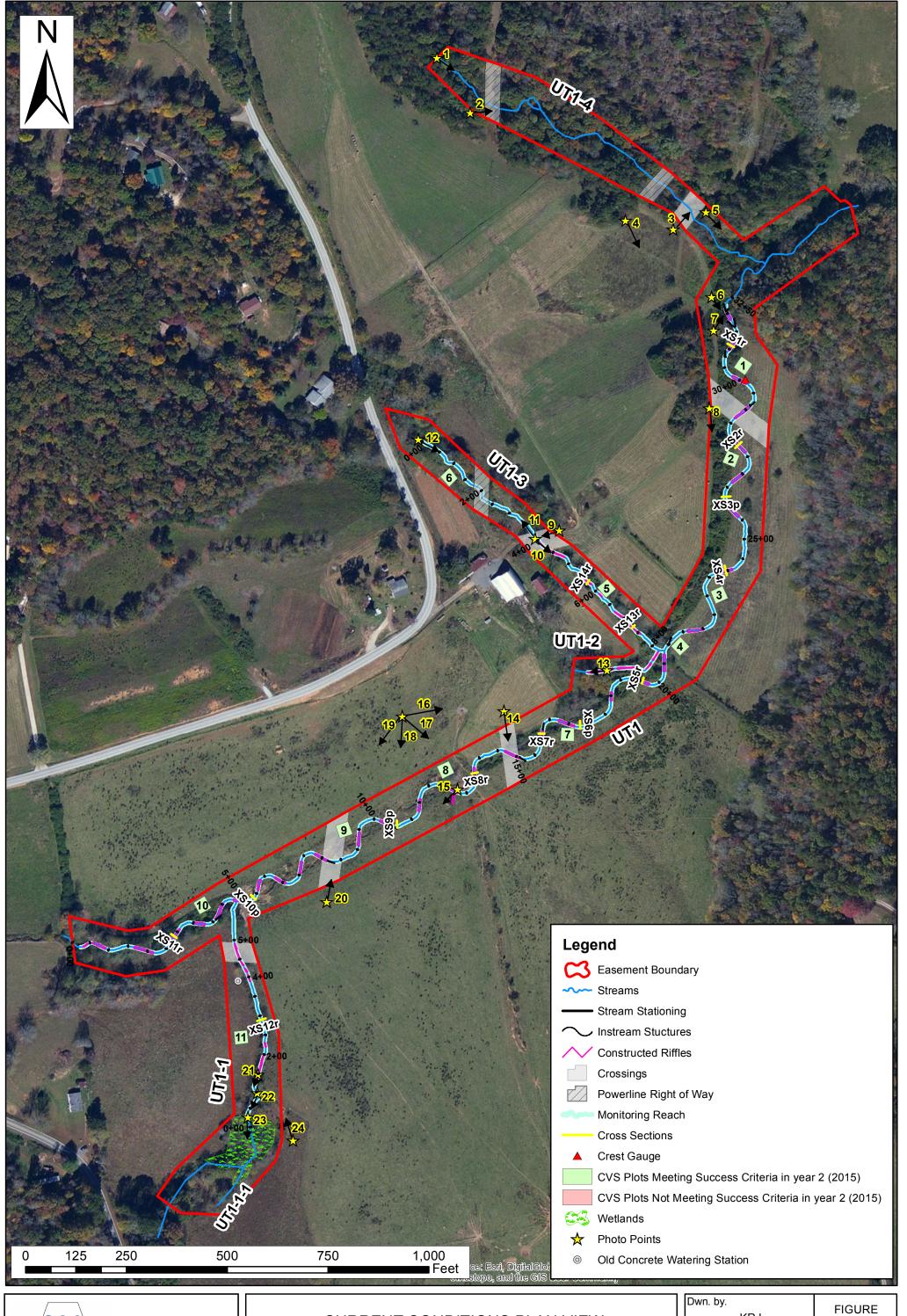
Designer	Michael Baker Engineering, Inc.
	797 Haywood Road, Suite 201
	Asheville, NC 28806
	Micky Clemmons 828-350-1408
Construction Plans and Sediment and	Michael Baker Engineering, Inc.
Erosion Control Plans	797 Haywood Road, Suite 201
	Asheville, NC 28806
	Micky Clemmons 828-350-1408
Construction Contractor	River Works, Inc.
	6105 Chapel Hill Rd.
	Raleigh, NC 27607
	919-582-3574
Planting Contractor	Carolina Silvies, Inc.
	908 Indian Trail Road
	Edenton, NC 27932
	(252) 482-8491
As-built Surveyor	Turner Land Surveying. PLLC
	3201 Glenridge Drive
	Raleigh, NC 27604
	919-875-1378
Baseline Data Collection	Axiom Environmental, Inc.
	218 Snow Avenue
	Raleigh, NC 27603
	Grant Lewis 919-215-1693

Table 4. Project Attribute Table UT to Martin's Creek (Contreras) Mitigation Site

UT to Martin's Creek (Contrera	s) Mitti	gation S									
Project County	Cherokee County, North Carolina										
Physiographic Region	Blue Ridge										
Ecoregion	Broad Basins										
Project River Basin					Hiwasse						
USGS HUC for Project (14 digit)		06020002170010									
NCDWQ Sub-basin for Project		04-05-02									
Planning Area			Yes	s – Peachti	ree-Marti	ns Cree	k LWI)			
WRC Class (Warm, Cool, Cold)					Cold						
% of easement fenced/demarcated			1	00% fence	d to excl	ude live	stock				
Beaver activity observed during			Vec on	IIT1 balos	y lower l	imits of	projec	t oron			
design phase?		Yes, on UT1 below lower limits of project area									
			Resto	ration Co	mponent	Attrib	ute Ta	ble			
	UT	` 1-1	UT 1-1-1	UT 1-2	UT	1-3	U	Т 1-4	UT Mart		
Drainage Area	.018	.028	.004	.005	.074	.082		023	.79	.82	
Stream Order (USGS topo)	1 st	2 nd	1 st	1 st	1 st	1 st		2 nd	3 rd	3rd	
Restored Length (feet)	346	548	106	207		738		1099	3123		
Perennial or Intermittent	I	P	I	I	I	P	I	P	P	P	
Watershed Type					Rural				•		
Watershed impervious cover	<10%										
NCDWQ AU/Index number	1-49										
NCDWQ Classification		С	С	С	C	,	С		(
303d listed?					No				•		
Upstream of a 303d listed					No						
Reasons for 303d listed segment					NA						
Total acreage of easement					15.63						
Total existing vegetated acreage of easement											
Total planted restoration acreage					~15.63						
Rosgen Classification of	D/I	7 /IC1.	Г	Г	CIC	1/D		D	C/EI	- /C1-	
preexisting	B/I	E/Eb	Е	F	G/C	/B		В	G/E	o/Cb	
Rosgen Classification of As-built		В		С	В	}		В	(
Valley type		II	II	II	I	[II	I	I	
Valley slope	.0	34		.010	.02	29			.0	09	
Cowardin classification of proposed	N	[/A	N/A	N/A	N/	A	1	N/A	N/	/A	
Trout waters designation					No						
Species of concern, endangered											
etc.					No						
Dominant Soil Series	Bras Con Thur Dil Comp	lluska stown nplex/ mont- llard lex/Arc	Junaluska Brasstown Complex	Arc qua loam	Thurn Dill Com	ard	7	aluska Fsali mplex	Arc qu	a loam	

APPENDIX B

VISUAL ASSESSMENT DATA


Figure 2. Current Conditions Plan View (CCPV)

Tables 5A-5D. Visual Stream Morphology Stability Assessment

Table 6. Vegetation Condition Assessment

Stream Station Photographs

Vegetation Plot Photographs

CURRENT CONDITIONS PLAN VIEW
UT TO MARTINS CREEK (CONTRERAS)
DMS PROJECT # 92766
Cherokee County, North Carolina

Dwn. by.	FIGURE
KRJ	FIGURE
Date:	
Dec. 2015	· ')
Project:	
12-004.16	

Table 5A <u>Visual Stream Morphology Stability Assessment</u>
Reach ID UT1

Reach ID UT1 Assessed Length 3123

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	39	39			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	40	40			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	40	40			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	40	40			100%			
		2. Thalweg centering at downstream of meander (Glide)	40	40			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	12	12			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	12	12			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	12	12			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	12	12			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	12	12			100%			

Table 5B <u>Visual Stream Morphology Stability Assessment</u>

Reach ID UT1-1 Assessed Length 602

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	14	14			100%			
	3. Meander Pool Condition	Depth Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	17	17			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	17	17			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	17	17			100%			
		2. Thalweg centering at downstream of meander (Glide)	17	17			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	13	13			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	13	13			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	13	13			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	13	13			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	13	13			100%			

Table 5C <u>Visual Stream Morphology Stability Assessment</u>

Reach ID Assessed Length UT1-2 207

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	6	6			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	5	5			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	5	5			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	5	5			100%			
		2. Thalweg centering at downstream of meander (Glide)	5	5			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	4	4			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	4	4			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	4	4			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	4	4			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	4	4			100%			

Table 5DVisual Stream Morphology Stability AssessmentReach IDUT1-3

803

Reach ID Assessed Length

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	23	23			100%			
	3. Meander Pool Condition	Depth Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	24	24			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	24	24			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	24	24			100%			
		Thalweg centering at downstream of meander (Glide)	24	24			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	9	9			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	9	9			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	9	9			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	9	9			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	9	9			100%			

Table 6

Vegetation Condition Assessment

UT to Martins Creek (Contreras) Mitigation Project

Planted Acreage¹

	10.00					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	None	0.1 acres	none	0	0.00	0.0%
2. Low Stem Density Areas	None	0.1 acres	none	0	0.00	0.0%
2B. Low Planted Stem Density Areas	None	0.1 acres	none	0	0.00	0.0%
			Total	0	0.00	0.0%
3. Areas of Poor Growth Rates or Vigor	None	0.25 acres	N/A	0	0.00	0.0%
		Cu	mulative Total	0	0.00	0.0%

Easement Acreage²

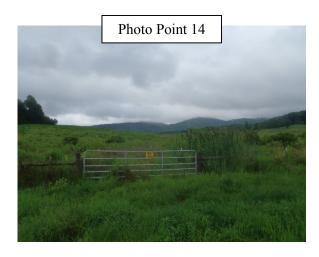

15.63

15.63


Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern ⁴	None	1000 SF	none	0	0.00	0.0%
5. Easement Encroachment Areas ³	None	none	none	0	0.00	0.0%

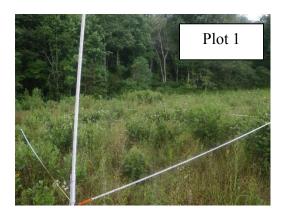
- 1 = Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.
- 2 = The acreage within the easement boundaries.
- 3 = Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1,2 or 3) as well as a parallel tally in item 5.
- 4 = Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spcies are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but can be mapped, if in the judgement of the observer their coverage, density or distribution is suppressing the viability, or growth of planted woody stems. Decisions as to whether remediation will be needed are based on the integration of risk factors by DMS such as species present, their coverage, distribution relative to native biomass, and the practicality of treatment. For example, even modest amounts of Kudzu or Japanese Knotweed early in the projects history will warrant control, but potentially large coverages of Microstegium in the herb layer will not likley trigger control because of the limited capacities to impact tree/shrub layers within the timeframes discussed and the protects in the projects provided to the protect of the control, but potentially large coverages of Microstegium in the herb layer will not likley trigger control because of the limited capacities to impact tree/shrub layers within the timeframes discussed and the protects as well, but have yet to be observed across the state with any frequency. Those species with the "watch list" designator in gray shade are of interest as well, but have yet to be observed across the state with any frequency. Those in red italics are of particular interest given their extreme risk/threat level for mapping as points where isolated specimens are found, particu

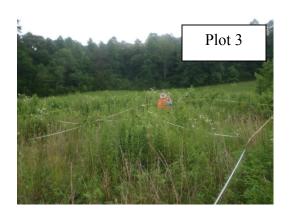
UT to Martin's Creek (Contreras) Year 1 Fixed Station Photographs Taken July 2015



UT to Martin's Creek (Contreras) Year 1 Fixed Station Photographs (continued) Taken July 2015

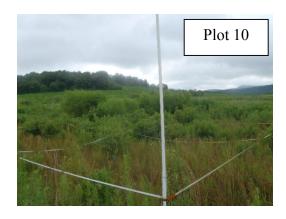
UT to Martin's Creek (Contreras) Year 1 Fixed Station Photographs (continued) Taken July 2015

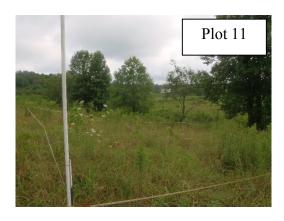



UT to Martin's Creek (Contreras) Year 1 Fixed Station Photographs (continued) Taken July 2015

UT to Martin's Creek (Contreras) Year 1 Vegetation Monitoring Photographs Taken July 14, 2015






UT to Martin's Creek (Contreras) Year 1 Vegetation Monitoring Photographs Taken July 14, 2015 (continued)

APPENDIX C

VEGETATION PLOT DATA

- Table 7. Vegetation Plot Criteria Attainment
- Table 8. CVS Vegetation Plot Metadata
- Table 9. Total and Planted Stems by Plot and Species

Table 7. Vegetation Plot Criteria Attainment Based on Planted Stems

UT to Martin's Creek (Contreras) Mitigation Site (DMS Project Number 92766)

Vegetation Plot ID	Vegetation Survival Threshold Met?	Tract Mean
1	Yes	
2	Yes	
3	Yes	
4	Yes	
5	Yes	
6	Yes	100%
7	Yes	
8	Yes	
9	Yes	
10	Yes	
11	Yes	

Table 8. CVS Vegetation Plot Metadata

UT to Martin's Creek (Contreras) Mitigation Site (DMS Project Number 92766)

,	as) Miligation Site (DMS Project Number 92766)
Report Prepared By	Corri Faquin
Date Prepared	12/10/2015 10:30
database name	Axiom-UTMartinsContreras-2015-A-v2.3.1.mdb
	S:\Business\Projects\12\12-004 EEP Monitoring\12-004.16 UT to Martins and Martins\UT to Martins
database location	(Contreras)\2015\CVS
computer name	KEENAN-PC
file size	38440960
DESCRIPTION OF WORKSHE	CETS IN THIS DOCUMENT
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all
Proj, total stems	natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
Planted Stems by Plot and Spp	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.
	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead
ALL Stems by Plot and spp	and missing stems are excluded.
PROJECT SUMMARY	
Project Code	92766
project Name	UT to Martin's Creek (Contreras)
Description	Stream Restoration
River Basin	Hiwassee
length(ft)	
stream-to-edge width (ft)	
area (sq m)	
Required Plots (calculated)	
Sampled Plots	11

Table 9 . Planted and Total Stems by Plot and Species

DMS Project Code 92766. Project Name: UT to Martin's Creek (Contreras)

			Current Plot Data (MY2 2015)																							
			927	92766-01-0001 92766-01-0002 92766-01-0003 92766-01-0004 92766-01-0005 92766-01-0006 92766-01-0007 92766-01-000)08												
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all 1	
Acer negundo	boxelder	Tree																								
Alnus serrulata	hazel alder	Shrub			29			14			4									2			10)		19
Amelanchier arborea	common serviceberry	Tree																								
Betula nigra	river birch	Tree	2	2	2				2	2	2	3	3	3				2	2	. 2	. 1	. 1	. 1			
Carpinus caroliniana	American hornbeam	Tree													4	4	4									
Carya	hickory	Tree				2	2	2																		
Carya alba	mockernut hickory	Tree	1	1	1	1	1	1	1	1	1	-														
Carya glabra	pignut hickory	Tree										1	1	1							1	. 1	. 1			
Cornus amomum	silky dogwood	Shrub										1	1	1		1	1									
Cornus florida	flowering dogwood	Tree																								
Diospyros virginiana	common persimmon	Tree																		1						
Juglans nigra	black walnut	Tree															2			4						
Liriodendron tulipifera	tuliptree	Tree				1	1	1							7	7	7	2	2	. 3	1	. 1	. 1	. 1	1	1
Nyssa sylvatica	blackgum	Tree																						2	2	2
Platanus occidentalis	American sycamore	Tree	2	2	2	2	2	2	3	3	3				1	1	1	1	1	1	. 2	2	2 2	2		
Prunus serotina	black cherry	Tree																								
Quercus	oak	Tree							1	1	1	. 2	2	2	1	1	1				2	2	2 2	2	2	2
Quercus coccinea	scarlet oak	Tree	1	1	1																					
Quercus nigra	water oak	Tree							1	1	1													1	1	1
Quercus pagoda	cherrybark oak	Tree										2	2	2							1	. 1	. 1			
Quercus rubra	northern red oak	Tree	2	2	2	2	2	2	2	2	2	1	1	1				8	8	8	2	2	2 2	2 7	7	7
Quercus shumardii	Shumard's oak	Tree							1	1	1													1	1	1
Salix nigra	black willow	Tree																								
Unknown		Shrub or Tree																								
		Stem count	8	8	37	8	8	22	11	11	15	10	10	10	13	14	16	13	13	21	. 10	10	20	14	14	33
		size (ares)		1			1			1			1			1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02	T		0.02			0.02	
		Species count	5	9	6	5	5	6	7	7	8	6	6	6	4	5	6	4	4	. 7	7	' 7	' 8	8 6	6	7
		Stems per ACRE	323.7	323.7	1497	323.7	323.7	890.3	445.2	445.2	607	404.7	404.7	404.7	526.1	566.6	647.5	526.1	526.1	849.8	404.7	404.7	809.4	566.6	566.6	1335

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

PnoLS = Planted excluding livestakes P-all = Planting including livestakes

T = All planted and natural recruits including livestakes

T includes natural recruits

Table 9 . Planted and Total Stems by Plot and Species (continued)

DMS Project Code 92766. Project Name: UT to Martin's Creek (Contreras)

			Current Plot Data (MY2 2015)							Annual Means										
			927	66-01-0	0009	927	66-01-0	0010	927	66-01-0	0011	М	Y2 (201	L 5)	M	Y1 (201	.4)	M	Y0 (201	4)
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Acer negundo	boxelder	Tree									1			1			1			
Alnus serrulata	hazel alder	Shrub			27			7						112			81			1
Amelanchier arborea	common serviceberry	Tree	2	2	2							2	2	2	. 2	2	2	3	3	3
Betula nigra	river birch	Tree				3	3	3				13	13	13	12	12	12	19	19	19
Carpinus caroliniana	American hornbeam	Tree	1	1	1							5	5	5	5	5	5	5	5	5
Carya	hickory	Tree										2	2	2	3	3	3	2	2	2
Carya alba	mockernut hickory	Tree										3	3	3	3	3	3	5	5	5
Carya glabra	pignut hickory	Tree							3	3	3	5	5	5	5	5	5	5	5	5
Cornus amomum	silky dogwood	Shrub										1	2	2	1	2	4		1	2
Cornus florida	flowering dogwood	Tree									4			4						
Diospyros virginiana	common persimmon	Tree												1				1	1	1
Juglans nigra	black walnut	Tree												6			3			
Liriodendron tulipifera	tuliptree	Tree	1	1	1	2	2	2	2	2	2	17	17	18	9	9	9	7	7	7
Nyssa sylvatica	blackgum	Tree										2	2	2						
Platanus occidentalis	American sycamore	Tree	5	5	5	3	3	3	1	1	1	20	20	20	8	8	8	10	10	10
Prunus serotina	black cherry	Tree									14			14			5			
Quercus	oak	Tree	5	5	5	1	1	1				14	14	14	16	16	16	49	49	49
Quercus coccinea	scarlet oak	Tree	1	1	1							2	2	2	. 2	2	2			
Quercus nigra	water oak	Tree										2	2	2	1	1	1	1	1	1
Quercus pagoda	cherrybark oak	Tree				2	2	2	3	3	3	8	8	8	8	8	8	5	5	5
Quercus rubra	northern red oak	Tree	2	2	2	1	1	1	3	3	3	30	30	30	23	23	23	1	1	1
Quercus shumardii	Shumard's oak	Tree				1	1	1				3	3	3						
Salix nigra	black willow	Tree																		1
Unknown		Shrub or Tree							1	1	1	1	1	1	. 1	1	1			6
		Stem count	17	17	44	13	13	20	13	13	32	130	131	270	99	100	192	113	114	123
		size (ares)) 1			1			1			11		11			11			
		size (ACRES)		0.02			0.02 0.02					0.27		0.27			0.27			
		Species count	7	7	8	7	7	8	6	6	9	17	17	23	15	15	19	13	14	17
		Stems per ACRE	688	688	1781	526.1	526.1	809.4	526.1	526.1	1295	478.3	481.9	993.3	364.2	367.9	706.4	415.7	419.4	452.5

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

PnoLS = Planted excluding livestakes P-all = Planting including livestakes

T = All planted and natural recruits including livestakes

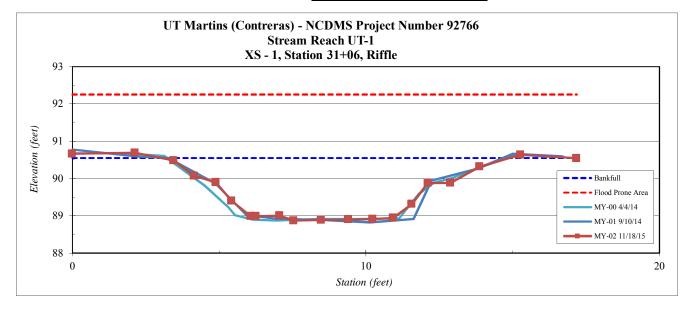
T includes natural recruits

APPENDIX D STREAM SURVEY DATA

Cross-section Plots
Longitudinal Profile Plots
Substrate Plots

Tables 10a-f. Baseline Stream Data Summary

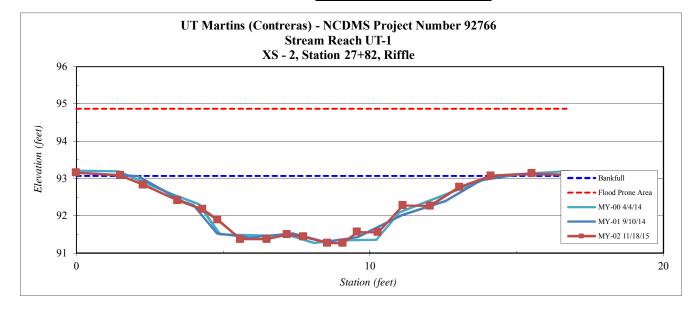
Tables 11a-f. Monitoring Data


Site	UT to Martins (Contreras)
Project Number:	92766
XS ID	XS - 1, Riffle
Reach	UT 1
Date:	11/18/2015
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.00	90.66
2.13	90.69
3.45	90.48
4.15	90.07
4.89	89.90
5.42	89.40
6.07	88.99
6.26	88.99
7.06	89.00
7.54	88.87
8.47	88.89
9.41	88.90
10.23	88.91
10.93	88.94
11.56	89.31
12.1	89.88
12.9	89.88
13.9	90.32
15.3	90.64
17.2	90.54
ĺ	

SUMMARY DATA	
Bankfull Elevation:	90.6
Bankfull Cross-Sectional Area:	12.4
Bankfull Width:	11.9
Flood Prone Area Elevation:	92.3
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.7
Mean Depth at Bankfull:	1.0
W/D Ratio:	11.4
Entrenchment Ratio:	8.4
Bank Height Ratio:	1.0

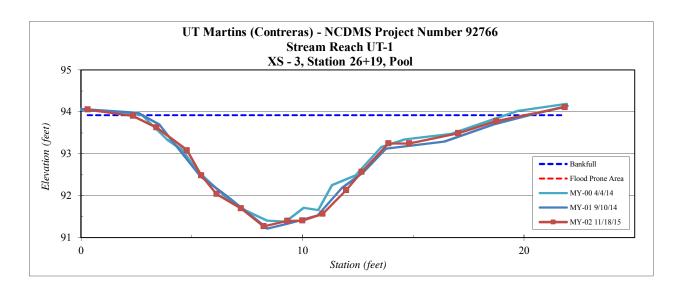
Stream Type	Е
-------------	---


Site	UT to Martins (Contreras)
Project Number:	92766
XS ID	XS - 2, Riffle
Reach	UT 1
Date:	11/18/2015
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.00	93.16
1.50	93.08
2.28	92.83
3.45	92.41
4.30	92.17
4.82	91.89
5.59	91.37
6.49	91.37
7.18	91.50
7.74	91.44
8.56	91.27
9.08	91.26
9.57	91.56
10.28	91.56
11.12	92.28
12.0	92.26
13.1	92.77
14.1	93.07
15.5	93.14
16.7	93.10

SUMMARY DATA	
Bankfull Elevation:	93.1
Bankfull Cross-Sectional Area:	13.1
Bankfull Width:	12.6
Flood Prone Area Elevation:	94.9
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.8
Mean Depth at Bankfull:	1.0
W / D Ratio:	12.1
Entrenchment Ratio:	7.9
Bank Height Ratio:	1.0

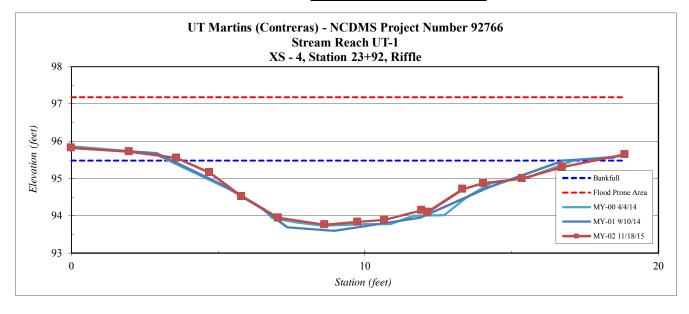
Stream Type E


Site	UT to Martins (Contreras)
Project Number:	92766
XS ID	XS - 3, Pool
Reach	UT 1
Date:	11/18/2015
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.3	94.1
2.3	93.9
3.4	93.6
4.8	93.1
5.4	92.5
6.1	92.0
7.2	91.7
8.2	91.3
9.3	91.4
10.0	91.4
10.9	91.6
12.0	92.1
12.7	92.6
13.9	93.2
14.8	93.2
17.0	93.5
18.7	93.8
21.8	94.1

SUMMARY DATA	
	02.0
Bankfull Elevation:	93.9
Bankfull Cross-Sectional Area:	21.2
Bankfull Width:	17.9
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	2.7
Mean Depth at Bankfull:	1.2
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

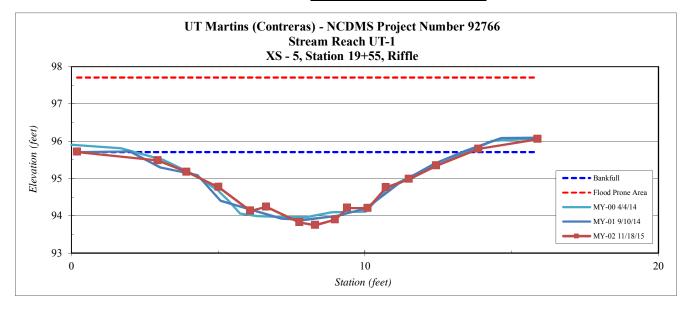
Stream Type E


Site	UT to Martins (Contreras)
Project Number:	92766
XS ID	XS - 4, Riffle
Reach	UT 1
Date:	11/18/2015
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.00	95.83
1.97	95.72
3.58	95.55
4.70	95.16
5.79	94.52
7.05	93.95
8.63	93.76
9.75	93.84
10.67	93.89
11.93	94.15
12.14	94.10
13.33	94.72
14.04	94.88
15.35	95.00
16.72	95.31
18.9	95.65

SUMMARY DATA	
Bankfull Elevation:	95.5
Bankfull Cross-Sectional Area:	13.5
Bankfull Width:	14.0
Flood Prone Area Elevation:	97.2
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.7
Mean Depth at Bankfull:	1.0
W / D Ratio:	14.5
Entrenchment Ratio:	7.1
Bank Height Ratio:	1.0

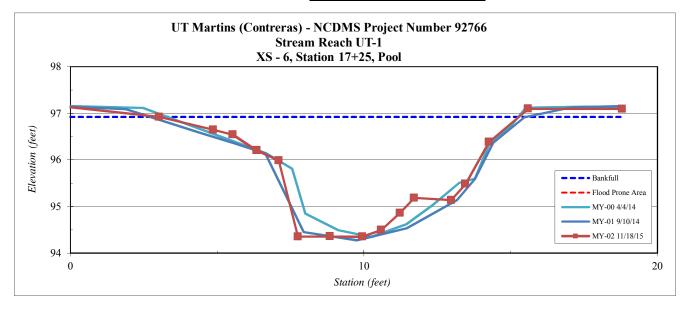
Stream Type E


Site	UT to Martins (Contreras)
Project Number:	92766
XS ID	XS - 5, Riffle
Reach	UT 1
Date:	11/18/2015
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.20	95.71
2.95	95.48
3.93	95.18
5.02	94.77
6.10	94.13
6.64	94.24
7.78	93.82
8.31	93.75
8.99	93.89
9.40	94.21
10.11	94.20
10.72	94.76
11.50	94.98
12.43	95.34
13.87	95.79
15.9	96.05

SUMMARY DATA	
Bankfull Elevation:	95.7
Bankfull Cross-Sectional Area:	11.8
Bankfull Width:	13.4
Flood Prone Area Elevation:	97.7
Flood Prone Width:	50.0
Max Depth at Bankfull:	2.0
Mean Depth at Bankfull:	0.9
W / D Ratio:	15.2
Entrenchment Ratio:	3.7
Bank Height Ratio:	1.0

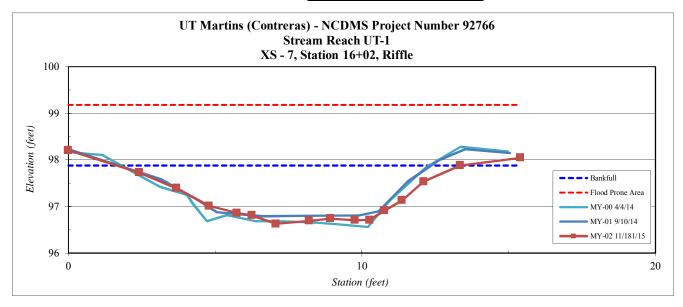
Stream Type	Е
-------------	---


Site	UT to Martins (Contreras)
Project Number:	92766
XS ID	XS - 6, Pool
Reach	UT 1
Date:	11/18/2015
Field Crew:	Perkinson, Jernigan

Station	Elevation
-0.30	97.15
3.03	96.92
4.87	96.65
5.54	96.54
6.35	96.20
7.10	95.99
7.76	94.35
8.84	94.36
9.95	94.35
10.59	94.49
11.24	94.86
11.72	95.18
12.98	95.13
13.46	95.48
14.27	96.38
15.60	97.10
18.81	97.09

SUMMARY DATA	
Bankfull Elevation:	96.9
Bankfull Cross-Sectional Area:	16.3
Bankfull Width:	12.2
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	2.6
Mean Depth at Bankfull:	1.3
W/D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

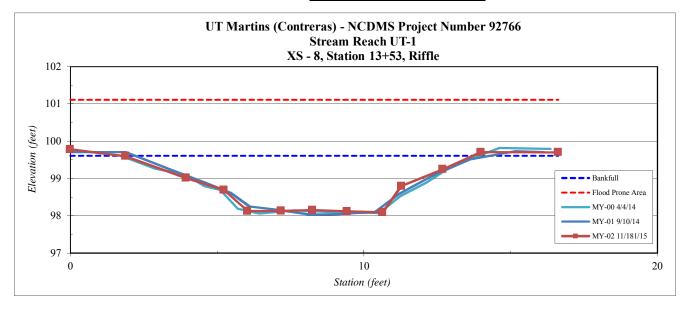
Stream Type E	Stream Type	Е
---------------	-------------	---


Site	UT to Martins (Contreras)
Project Number:	92766
XS ID	XS - 7, Riffle
Reach	UT 1
Date:	11/18/2015
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.00	98.21
2.41	97.73
3.68	97.39
4.80	97.01
5.75	96.86
6.25	96.81
7.08	96.63
8.21	96.69
8.92	96.74
9.77	96.71
10.26	96.71
10.77	96.91
11.37	97.13
12.10	97.53
13.35	97.88
15.4	98.05

SUMMARY DATA	
Bankfull Elevation:	97.9
Bankfull Cross-Sectional Area:	9.0
Bankfull Width:	11.7
Flood Prone Area Elevation:	99.2
Flood Prone Width:	50.0
Max Depth at Bankfull:	1.3
Mean Depth at Bankfull:	0.8
W / D Ratio:	15.2
Entrenchment Ratio:	4.3
Bank Height Ratio:	1.0

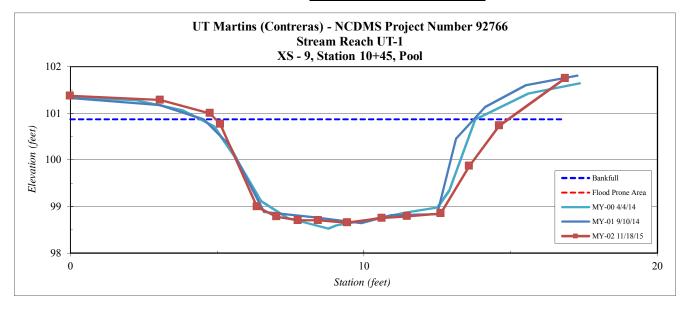
Stream Type E	Stream Type	Е
---------------	-------------	---


Site	UT to Martins (Contreras)
Project Number:	92766
XS ID	XS - 8, Riffle
Reach	UT 1
Date:	11/18/2015
Field Crew:	Perkinson, Jernigan

- TI
Elevation
99.79
99.60
99.02
98.69
98.13
98.13
98.15
98.12
98.09
98.80
99.25
99.71
99.70

SUMMARY DATA	
Bankfull Elevation:	99.6
Bankfull Cross-Sectional Area:	11.1
Bankfull Width:	11.9
Flood Prone Area Elevation:	101.1
Flood Prone Width:	50.0
Max Depth at Bankfull:	1.5
Mean Depth at Bankfull:	0.9
W / D Ratio:	12.8
Entrenchment Ratio:	4.2
Bank Height Ratio:	1.0

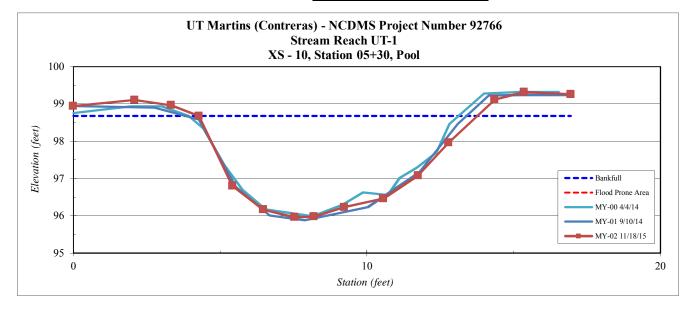
Stream Type E


Site	UT to Martins (Contreras)
Project Number:	92766
XS ID	XS - 9, Pool
Reach	UT 1
Date:	11/18/2015
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.00	101.37
3.06	101.29
4.76	101.00
5.11	100.77
6.36	99.00
7.02	98.78
7.75	98.70
8.45	98.70
9.43	98.65
10.61	98.75
11.48	98.79
12.62	98.85
13.60	99.87
14.62	100.74
16.86	101.75
_	

SUMMARY DATA	
Bankfull Elevation:	100.9
Bankfull Cross-Sectional Area:	16.6
Bankfull Width:	10.0
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	2.2
Mean Depth at Bankfull:	1.7
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

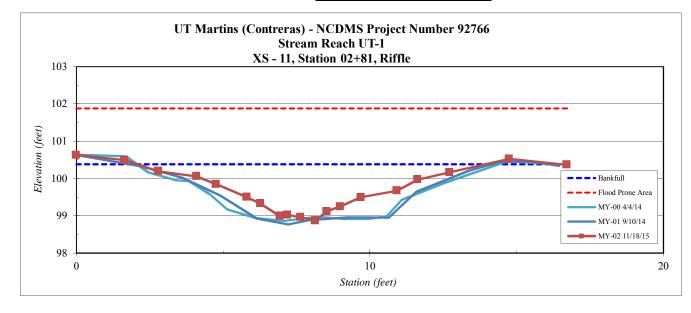
Stream Type E	
---------------	--


Site	UT to Martins (Contreras)
Project Number:	92766
XS ID	XS - 10, Pool
Reach	UT 1
Date:	11/18/2015
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.00	98.94
2.09 3.34	99.10
4.28	98.96
	98.68
5.42	96.80
6.47	96.16
7.54	95.96
8.20	95.98
9.23	96.23
10.56	96.46
11.75	97.08
12.78	97.96
14.35	99.12
15.35	99.32
16.95	99.26
	İ

SUMMARY DATA	
Bankfull Elevation:	98.7
Bankfull Cross-Sectional Area:	17.5
Bankfull Width:	9.5
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	2.7
Mean Depth at Bankfull:	1.8
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

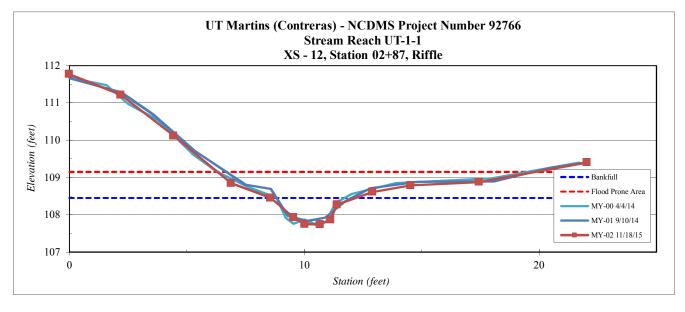
Stream Type E


Site	UT to Martins (Contreras)
Project Number:	92766
XS ID	XS - 11, Riffle
Reach	UT 1
Date:	11/18/2015
Field Crew:	Perkinson, Jernigan

Elevation
100.63
100.49
100.19
100.06
99.85
99.50
99.33
98.99
99.02
98.96
98.87
99.12
99.25
99.50
99.67
99.97
100.17
100.52
100.37

SUMMARY DATA	
Bankfull Elevation:	100.4
Bankfull Cross-Sectional Area:	8.0
Bankfull Width:	11.9
Flood Prone Area Elevation:	101.9
Flood Prone Width:	50.0
Max Depth at Bankfull:	1.5
Mean Depth at Bankfull:	0.7
W / D Ratio:	17.7
Entrenchment Ratio:	4.2
Bank Height Ratio:	1.0

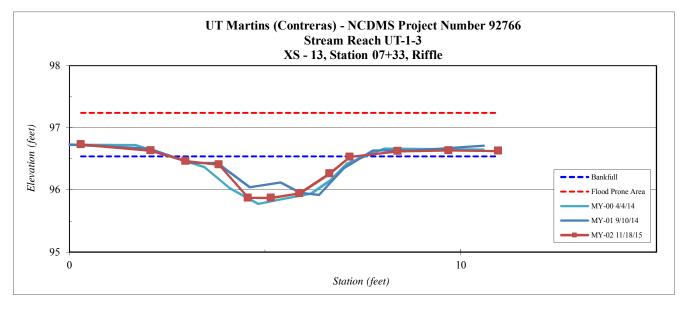
Stream Type	Е
-------------	---


Site	UT to Martins (Contreras)
Project Number:	92766
XS ID	XS - 12, Riffle
Reach	UT 1-1
Date:	11/18/2015
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.00	111.77
2.19	111.77
4.44	110.12
6.88	108.85
8.57	108.85
9.55	
	107.93
10.02	107.75
10.67	107.74
11.12	107.87
11.40	108.28
12.91	108.61
14.54	108.79
17.44	108.88
22.04	109.40

SUMMARY DATA	
Bankfull Elevation:	108.5
Bankfull Cross-Sectional Area:	1.5
Bankfull Width:	3.6
Flood Prone Area Elevation:	109.2
Flood Prone Width:	14.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	8.6
Entrenchment Ratio:	3.9
Bank Height Ratio:	1.0

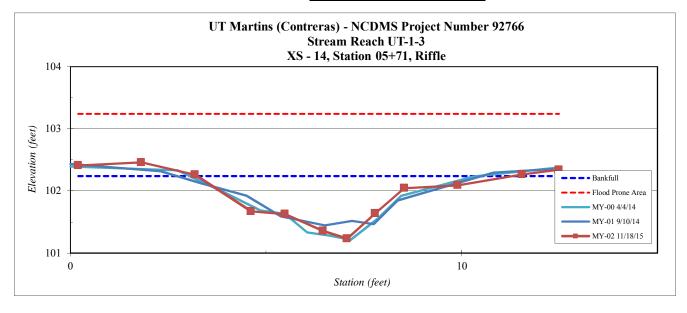
Stream Type	E
Stream Type	L


Site	UT to Martins (Contreras)
Project Number:	92766
XS ID	XS - 13, Riffle
Reach	UT 1-3
Date:	11/18/2015
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.30	96.73
2.08	96.63
2.97	96.46
3.82	96.41
4.57	95.87
5.15	95.87
5.88	95.94
6.66	96.26
7.17	96.53
8.40	96.62
9.69	96.63
10.96	96.63

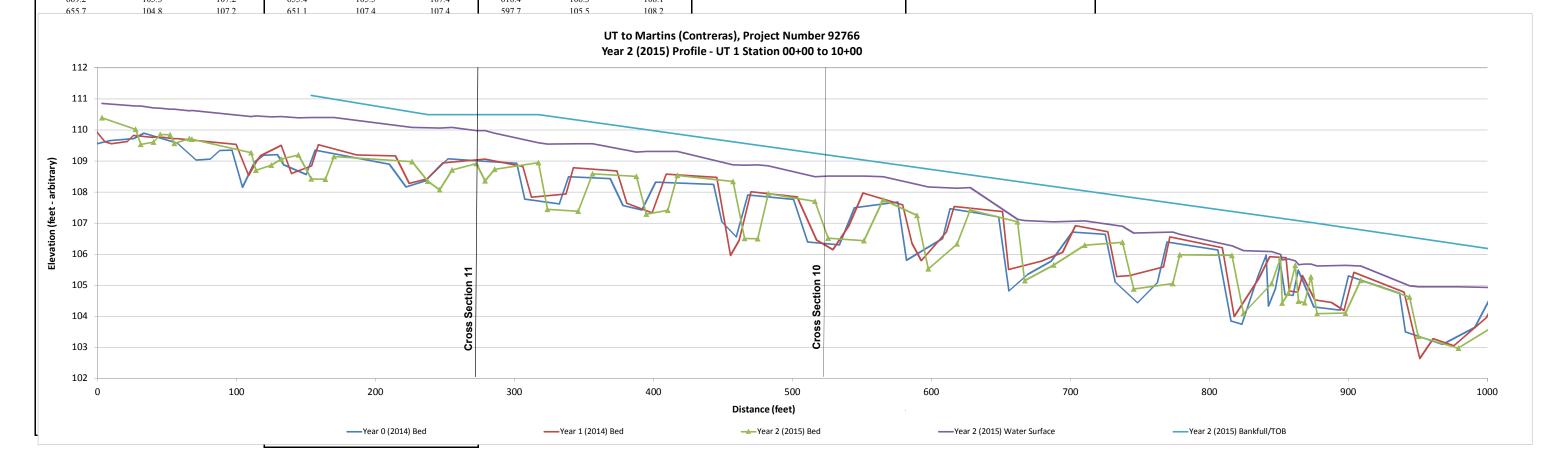
SUMMARY DATA	
Bankfull Elevation:	96.5
Bankfull Cross-Sectional Area:	1.7
Bankfull Width:	4.7
Flood Prone Area Elevation:	97.2
Flood Prone Width:	25.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	13.0
Entrenchment Ratio:	5.3
Bank Height Ratio:	1.0

Stream Type	C/E


Site	UT to Martins (Contreras)
Project Number:	92766
XS ID	XS - 14, Riffle
Reach	UT 1-3
Date:	11/18/2015
Field Crew:	Perkinson, Jernigan

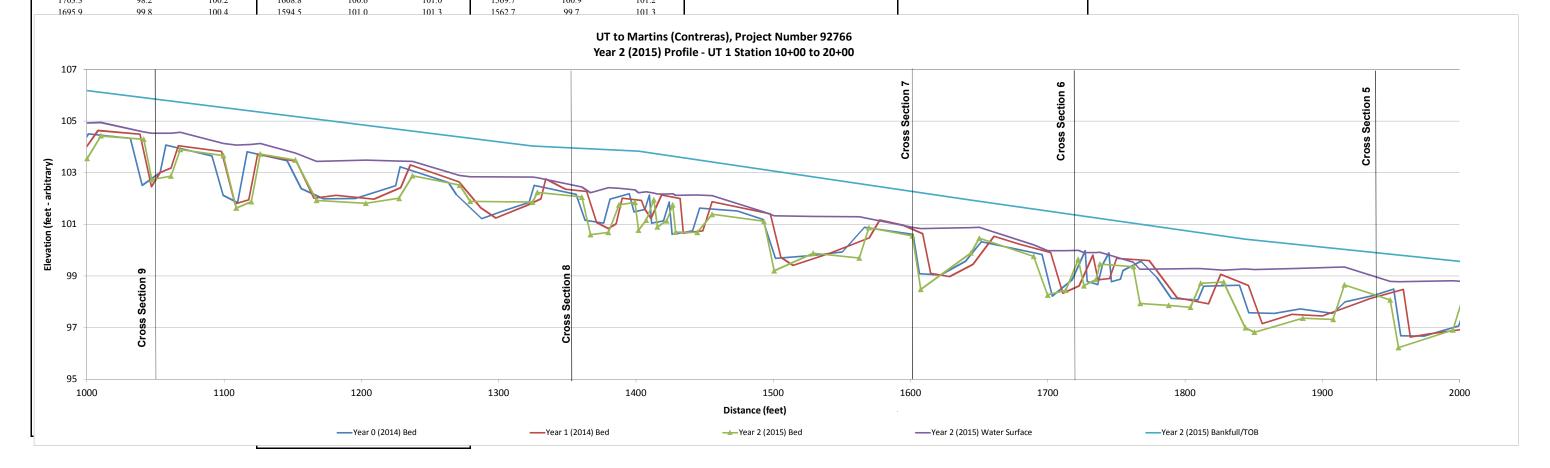
Station	Elevation
0.20	102.41
1.81	102.46
3.19	102.26
4.62	101.67
5.49	101.63
6.45	101.36
7.07	101.23
7.79	101.64
8.53	102.04
9.90	102.09
11.54	102.27
12.48	102.34

SUMMARY DATA	
Bankfull Elevation:	102.2
Bankfull Cross-Sectional Area:	3.4
Bankfull Width:	8.1
Flood Prone Area Elevation:	103.2
Flood Prone Width:	25.0
Max Depth at Bankfull:	1.0
Mean Depth at Bankfull:	0.4
W / D Ratio:	19.3
Entrenchment Ratio:	3.1
Bank Height Ratio:	1.0


Stream Type C/E

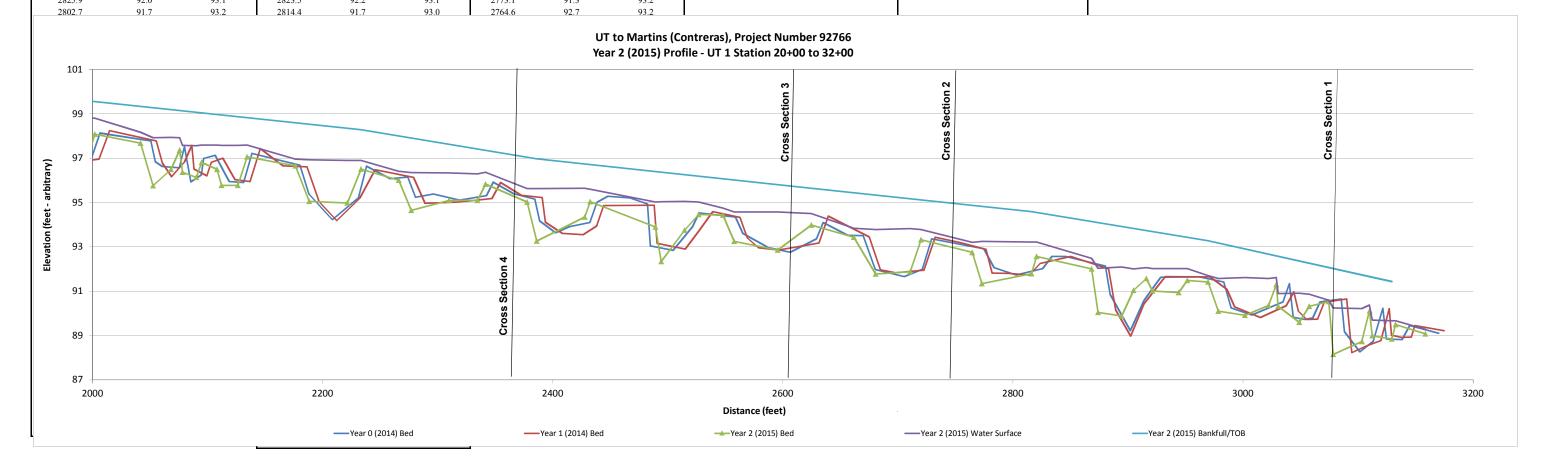
Project Name Reach UT to Martins (Contreras), NC EEP Project Number 92766 UT 1 Station 00+00 - 10+00

OI CII	r erminsen, vermga													
	2014			2014			2015			2016			2017	
	Year 0 Monitoring \Su	rvev	,	Year 1 Monitoring \S	Survey	,	Year 2 Monitoring \S	urvev		Year 3 Monitoring \	Survey	,	Year 4 Monitoring	Survey
Station		Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station		Water Elevation
1001.1	104.5	105.0	1008.1	104.6	105.1	1000.3	103.6	104.9						
991.0	103.6	105.0	999.2	104.0	105.1	979.1	103.0	104.9						
967.6	103.1	105.0	975.8	103.0	105.2	950.3	103.3	105.0						
941.1	103.5	105.0	961.0	103.3	105.2	944.1	104.6	105.0						
936.9	104.7	105.2	951.3	102.6	105.2	908.9	105.2	105.6						
899.9	105.3	105.7	940.2	104.8	105.2	897.8	104.1	105.6						
894.1	104.2	105.7	903.9	105.4	105.8	877.5	104.1	105.6						
875.1	104.3	105.7	896.7	104.2	105.8	873.1	105.3	105.7						
863.9	105.5	105.7	887.8	104.4	105.8	868.4	104.4	105.7						
860.2	104.7	105.7	875.7	104.5	105.8	864.1	104.5	105.7						
854.4	104.7	105.8	866.9	105.3	105.8	861.8	105.6	105.8						
851.1	105.7	105.9	863.7	104.8	105.8	857.0	104.8	105.8						
847.6	104.9	105.9	857.5	104.8	105.8	852.4	104.4	105.8						
842.6	104.3	105.9	855.1	105.9	106.0	851.1	105.9	106.0						
840.9	106.0	106.2	843.3	105.9	106.3	844.7	105.1	106.1						
835.0	105.3	106.2	835.5	105.2	106.2	824.5	104.1	106.1						
823.4	103.7	106.2	817.9	104.0	106.3	816.2	106.0	106.3						
815.6	103.8	106.2	809.3	106.2	106.4	778.7	106.0	106.6						
806.1	106.1	106.5	771.6	106.6	106.9	773.5	105.0	106.7						
769.4	106.4	106.8	766.9	105.6	106.9	745.6	104.9	106.7						
762.6	105.1	106.8	742.5	105.3	106.9	737.4	106.4	106.9						
748.3	104.4	106.8	733.3	105.3	106.9	710.4	106.3	107.1						
732.1	105.1	106.8	726.8	106.7	106.9	688.0	105.6	107.0						
725.1	106.6	107.0	703.6	106.9	107.3	667.1	105.1	107.1						
701.4	106.7	107.2	694.4	106.1	107.4	661.9	107.0	107.1						
686.2	105.8	107.2	679.0	105.8	107.4	627.8	107.4	108.1						
669.2	105.3	107.2	655.4	105.5	107.4	618.4	106.3	108.1						


	2014	2014	2015	2016	2017
A W-4 C	-			2010	2017
Avg. Water Surface Slope	0.0069	0.0066	0.0069		
Riffle Length	33	32	31		
Avg. Riffle Slope	0.0107	0.0118	0.0117		
Pool Length	40	42	39		
Pool to Pool Spacing	66	71	64		

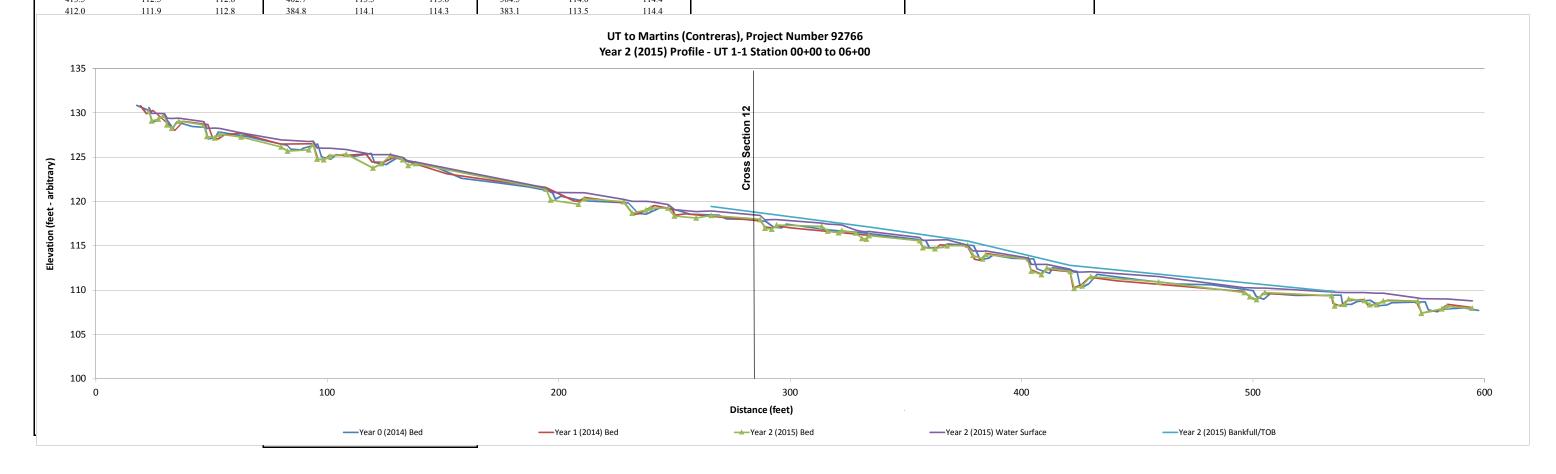
Project Name Reach UT to Martins (Contreras), NC EEP Project Number 92766 UT 1 Station 10+00 - 20+00

CICII	r entingen, veringer													
	2014			2014			2015			2016			2017	
Y	Year 0 Monitoring \Su	rvev	,	Year 1 Monitoring \S	Survey	,	Year 2 Monitoring \S	Survey		Year 3 Monitoring \S	urvev	3	Year 4 Monitoring	Survey
Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation
2006.3	98.1	98.7	2005.5	97.0	98.7	2001.8	98.1	98.8						
1999.4	97.1	98.7	1977.9	96.8	98.8	1995.2	96.9	98.8						
1974.3	96.7	98.7	1964.2	96.6	98.7	1955.6	96.2	98.8						
1957.1	96.7	98.7	1958.9	98.5	98.8	1949.4	98.1	98.8						
1952.0	98.5	98.8	1934.5	98.1	99.0	1916.1	98.7	99.4						
1937.4	98.2	98.9	1924.6	97.9	99.0	1907.8	97.3	99.3						
1916.5	98.0	99.0	1900.2	97.5	99.0	1885.8	97.4	99.3						
1907.4	97.5	99.0	1877.8	97.5	99.0	1850.7	96.8	99.2						
1883.9	97.7	99.0	1856.1	97.2	99.0	1844.0	97.0	99.3						
1865.1	97.6	99.0	1846.2	98.6	99.0	1828.1	98.8	99.2						
1846.5	97.6	99.0	1825.9	99.1	99.4	1811.5	98.7	99.3						
1839.6	98.6	99.0	1817.1	97.9	99.3	1804.0	97.8	99.3						
1813.6	98.6	99.4	1794.3	98.2	99.4	1788.1	97.9	99.3						
1809.5	98.1	99.4	1773.9	99.6	99.7	1767.3	97.9	99.3						
1790.1	98.1	99.4	1750.2	99.7	100.1	1762.4	99.4	99.5						
1779.6	98.9	99.5	1745.0	98.9	100.1	1737.9	99.5	99.9						
1767.8	99.6	99.7	1736.6	98.9	100.1	1735.2	98.9	99.9						
1754.8	99.2	99.7	1732.9	99.8	100.1	1726.3	98.6	99.9						
1752.9	98.9	99.7	1722.8	98.6	100.1	1722.3	99.6	100.0						
1746.3	98.8	99.7	1711.1	98.3	100.1	1713.0	98.4	100.0						
1744.5	99.9	100.0	1702.1	99.9	100.3	1699.9	98.3	100.0						
1739.8	99.4	100.0	1678.8	100.2	100.7	1689.8	99.8	100.2						
1736.5	98.7	100.0	1660.8	100.5	100.9	1650.2	100.5	100.9						
1728.7	98.8	100.1	1645.4	99.4	100.9	1644.2	99.9	100.9						
1727.2	100.0	100.2	1628.5	99.0	100.9	1607.6	98.5	100.8						
1717.9	98.9	100.2	1614.7	99.1	100.9	1601.4	100.6	100.9						
1703.3	98.2	100.2	1608.8	100.6	101.0	1569.7	100.9	101.2						


	2014	2014	2015	2016	2017
Avg. Water Surface Slope	0.0069	0.0066	0.0069		
Riffle Length	33	32	31		
Avg. Riffle Slope	0.0107	0.0118	0.0117		
Pool Length	40	42	39		
Pool to Pool Spacing	66	71	64		

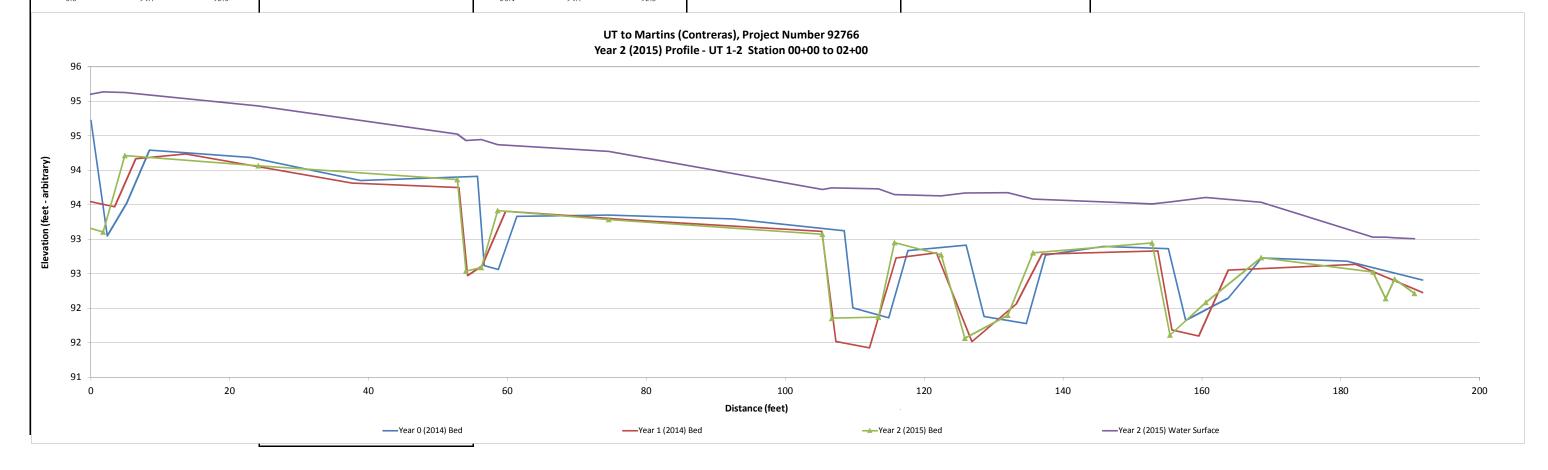
Project Name Reach UT to Martins (Contreras), NC EEP Project Number 92766 UT 1 Station 20+00 - 32+00

· · · ·	r erkinson, veringu													
	2014			2014			2015			2016			2017	
Y	Year 0 Monitoring \Su	irvev	, s	Year 1 Monitoring \S	Survey	,	Year 2 Monitoring \S	Survey		Year 3 Monitoring \S	Survey		Year 4 Monitoring	Survey
Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station		Water Elevatio
3170.0	89.1	89.4	3174.7	89.2	89.4	3158.6	89.1	89.3						
3145.0	89.5	89.8	3149.4	89.4	89.8	3132.7	89.5	89.7						
3138.3	88.8	89.8	3146.4	88.9	89.8	3129.4	88.8	89.7						
3124.6	88.8	89.8	3137.7	88.9	89.8	3112.3	89.0	89.7						
3121.6	90.2	90.3	3128.9	89.0	89.9	3109.9	90.1	90.4						
3113.2	88.7	90.4	3127.0	90.2	90.3	3103.3	88.7	90.2						
3101.4	88.3	90.3	3119.8	88.8	90.4	3078.4	88.2	90.2						
3088.0	89.2	90.4	3108.6	88.5	90.2	3074.6	90.5	90.6						
3085.4	90.7	90.8	3094.5	88.2	90.2	3057.4	90.3	90.9						
3066.9	90.5	91.0	3090.0	90.7	90.9	3048.9	89.6	90.9						
3060.6	89.8	91.0	3070.6	90.5	91.0	3030.5	90.3	90.9						
3053.7	89.7	91.1	3064.8	89.7	91.0	3028.8	91.3	91.6						
3043.5	89.8	91.0	3055.2	89.7	91.0	3022.2	90.4	91.6						
3040.2	91.3	91.6	3048.0	90.1	90.9	3001.7	89.9	91.6						
3034.9	90.5	91.6	3044.2	91.0	91.6	2978.5	90.1	91.6						
3007.6	89.9	91.6	3037.6	90.3	91.6	2969.7	91.4	91.7						
2989.7	90.3	91.7	3014.9	89.8	91.5	2951.6	91.5	92.0						
2983.2	91.4	91.7	2992.8	90.3	91.5	2944.0	90.9	92.0						
2962.1	91.7	92.2	2986.1	91.1	91.8	2921.2	91.0	92.0						
2928.5	91.6	92.1	2971.2	91.6	92.0	2916.0	91.6	92.1						
2914.1	90.6	92.1	2932.5	91.7	92.0	2904.9	91.0	92.0						
2902.0	89.2	92.1	2913.6	90.4	92.1	2894.5	89.9	92.1						
2884.4	90.8	92.2	2902.2	89.0	92.1	2873.9	90.0	92.0						
2880.3	92.1	92.6	2889.2	90.2	92.0	2868.3	92.0	92.5						
2845.7	92.6	93.0	2883.3	92.0	92.5	2820.4	92.6	93.2						
2833.9	92.6	93.1	2850.4	92.6	92.9	2816.1	91.8	93.2						
2825.9	92.0	93.1	2823.5	92.2	93.1	2773.1	91.3	93.2						


	2014	2014	2015	2016	2017
Avg. Water Surface Slope	0.0069	0.0066	0.0069		
Riffle Length	33	32	31		
Avg. Riffle Slope	0.0107	0.0118	0.0117		
Pool Length	40	42	39		
Pool to Pool Spacing	66	71	64		

Project Name Reach UT to Martins (Contreras), NC EEP Project Number 92766 UT 1-1 Station 00+00 - 06+00

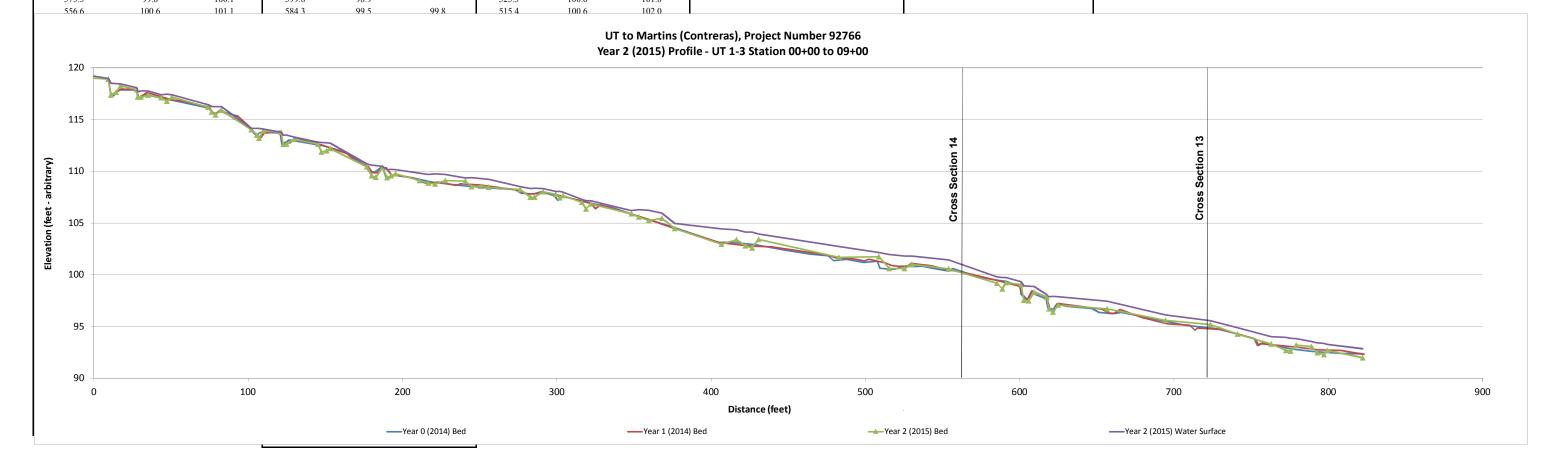
i CW	i cikinson, seringai	u ,						1						
	2014			2014			2015			2016			2017	
Y	ear 0 Monitoring \Sur	rvey	,	Year 1 Monitoring \S	Survey	,	Year 2 Monitoring \S	Survey		Year 3 Monitoring \S	Survey	,	Year 4 Monitoring	Survey
Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation
597.4	107.7	108.5	593.9	108.1	108.7	594.7	108.0	108.8						
591.3	108.0	108.6	584.1	108.4	108.8	583.7	108.2	109.0						
581.8	107.9	108.5	580.9	107.8	108.8	581.6	107.9	109.0						
579.4	107.6	108.6	572.9	107.4	108.9	572.7	107.4	109.1						
575.8	107.8	108.7	570.5	108.8	109.1	571.2	108.7	109.1						
574.4	108.7	108.9	558.2	108.9	109.2	556.2	108.8	109.6						
559.8	108.6	109.3	554.2	108.5	109.2	553.4	108.4	109.7						
557.6	108.3	109.3	550.1	108.2	109.2	550.5	108.4	109.7						
554.3	108.3	109.3	547.4	109.0	109.2	548.0	108.8	109.7						
550.5	108.9	109.3	540.9	108.9	109.3	541.3	109.0	109.7						
544.9	108.7	109.5	537.8	108.2	109.4	539.4	108.4	109.7						
542.5	108.4	109.5	534.6	108.5	109.3	535.2	108.2	109.8						
538.7	108.4	109.5	533.9	109.4	109.5	534.0	109.4	109.8						
538.0	109.5	109.5	504.2	109.6	110.0	505.1	109.7	110.2						
518.3	109.4	110.0	502.4	109.1	109.9	501.5	108.9	110.2						
507.5	109.6	109.9	499.8	109.0	109.9	498.6	109.3	110.3						
504.5	109.0	110.0	496.3	109.8	110.0	496.3	109.7	110.3						
501.3	109.3	109.9	458.8	110.7	111.1	459.2	110.9	111.5						
499.9	110.0	110.1	440.7	111.1	111.5	429.9	111.5	112.1						
482.1	110.6	110.9	429.3	111.5	111.8	426.1	110.5	112.0						
467.0	110.7	111.1	425.8	110.6	111.8	422.6	110.2	112.1						
451.7	111.1	111.4	422.3	110.2	111.8	420.9	112.1	112.4						
432.5	111.8	111.9	420.9	112.1	112.2	410.9	112.5	112.9						
428.9	110.7	111.9	410.4	112.4	112.8	408.6	111.8	112.9						
425.5	110.3	111.9	408.3	111.8	112.8	404.1	112.2	112.9						
423.9	112.1	112.2	404.0	112.3	112.8	402.8	113.5	113.6						
413.5	112.5	112.8	402.7	113.5	113.6	384.5	114.0	114.4						


	_				
	2014	2014	2015	2016	2017
Avg. Water Surface Slope	0.0383	0.0385	0.0381		
Riffle Length	24	26	19		
Avg. Riffle Slope	0.0357	0.0306	0.0392		
Pool Length	8	9	10		
Pool to Pool Spacing	32	34	27		

Project Name Reach UT to Martins (Contreras), NC EEP Project Number 92766 UT 1-2 Station 00+00 - 02+00

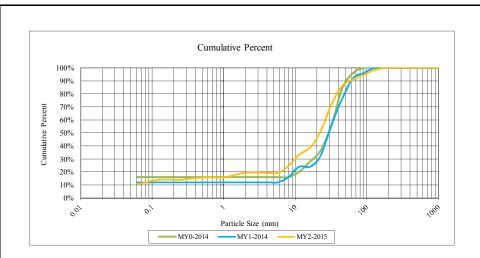
0.011		r emmoon, vermga		T			T			ī					
		2014			2014			2015			2016			2017	
	Y	ear 0 Monitoring \Su	rvev	,	Year 1 Monitoring \S	Survey	,	Year 2 Monitoring \S	urvev	,	Year 3 Monitoring \S	urvev	,	Year 4 Monitoring	Survey
	Station	Bed Elevation	Water Elevation	Station		Water Elevation									
	191.8	92.4	93.0	191.8	92.2	92.9	190.6	92.2	93.0				1		
	180.9	92.7	93.2	182.1	92.6	93.1	187.8	92.4	93.0						
	168.6	92.7	93.2	163.8	92.6	93.3	186.5	92.1	93.0						
	163.8	92.1	93.2	159.6	91.6	93.3	184.7	92.5	93.0						
	157.7	91.8	93.2	155.7	91.7	93.3	168.6	92.7	93.5						
	155.2	92.9	93.2	153.7	92.8	93.3	160.6	92.1	93.6						
	145.8	92.9	93.3	137.0	92.8	93.4	155.4	91.6	93.5						
	137.5	92.8	93.3	133.3	92.1	93.4	152.8	92.9	93.5						
	134.7	91.8	93.3	126.9	91.5	93.4	135.7	92.8	93.6						
	128.6	91.9	93.3	121.8	92.8	93.5	132.1	91.9	93.7						
	126.0	92.9	93.3	116.0	92.7	93.5	125.9	91.6	93.7						
	117.6	92.8	93.4	112.1	91.4	93.5	122.5	92.8	93.6						
	114.9	91.9	93.4	107.3	91.5	93.5	115.7	93.0	93.6						
	109.8	92.0	93.3	105.3	93.1	93.4	113.4	91.9	93.7						
	108.5	93.1	93.4	79.0	93.3	93.9	106.7	91.9	93.7						
	92.4	93.3	93.6	59.7	93.4	94.0	105.3	93.1	93.7						
	74.5	93.4	93.9	56.3	92.6	94.0	74.6	93.3	94.3						
	61.3	93.3	93.9	54.3	92.5	94.1	58.6	93.4	94.4						
	58.7	92.6	93.9	53.0	93.7	94.1	56.2	92.6	94.4						
	56.6	92.6	93.9	37.6	93.8	94.4	54.0	92.5	94.4						
	55.7	93.9	94.0	13.6	94.2	94.8	52.8	93.9	94.5						
	38.8	93.9	94.3	6.5	94.2	94.9	24.1	94.1	94.9						
	23.0	94.2	94.6	3.4	93.5	94.9	4.9	94.2	95.1						
	8.4	94.3	94.7	-1.4	93.6	94.8	1.8	93.1	95.1						
	5.1	93.5	94.8	-2.2	94.6	94.9	-1.2	93.2	95.1						
	2.3	93.1	94.7				-2.7	94.7	95.1						
	0.0	94.7	95.0				-50.1	94.7	95.3						

	2014	2014	2015	2016	2017
			2015	2016	2017
Avg. Water Surface Slope	0.0105	0.0102	0.0096		
Riffle Length	29	27	30		
Avg. Riffle Slope	0.0108	0.0112	0.0114		
Pool Length	10	10	9		
Pool to Pool Spacing	38	37	38		



UT to Martins (Contreras), NC EEP Project Number 92766 UT 1-3 Station 00+00 - 09+00

Project Name Reach Project Number Date Crew 92766 11/18/15 Perkinson Jernigan


Crew	Perkinson, Jernigai	n												
	2014			2014	2		2015			2016			2017	10
Station Y	ear 0 Monitoring \Sur Bed Elevation	rvey Water Elevation	Station	Year 1 Monitoring \\ Bed Elevation	Survey Water Elevation	Station	Year 2 Monitoring \S Bed Elevation	Survey Water Elevation	Station	Year 3 Monitoring \S Bed Elevation	ourvey Water Elevation	Station	Year 4 Monitorin	g \Survey Water Elevation
822.4	92.4	92.9	823.2	92.3	92.8	822.3	92.0	92.9	Station	Deu Elevation	water Elevation	Station	Deu Elevation	water Elevation
822.4 807.4	92.4 92.4	93.0	808.3	92.3 92.7	93.0	799.3	92.0 92.7	93.3						
789.7	92.4	93.3	793.4	92.7	93.0	797.3	92.7	93.4						
775.6	92.8	93.5	781.8	93.0	93.4	797.3	92.5 92.5	93.4						
757.6	93.4	93.8	769.7	93.1	93.5	789.1	93.0	93.6						
754.1	93.4	93.8	756.4	93.3	93.7	779.1	93.0	93.8						
752.0	93.8	93.9	754.8	93.2	93.7	775.7	92.6	93.9						
727.9	94.8	95.0	752.6	93.8	93.9	772.5	92.7	94.0						
707.0	95.1	95.4	738.3	94.4	75.7	763.1	93.3	94.0						
681.7	95.9	96.2	729.5	94.7	95.1	741.2	94.3	94.9						
665.8	96.4	97.0	715.1	94.8	95.2	723.6	95.2	95.6						
662.5	96.3	97.0	713.7	94.6	95.2	694.6	95.6	96.1						
660.1	96.2	97.0	710.2	95.1	95.3	656.6	96.7	97.5						
651.4	96.4	97.1	696.1	95.2	95.6	624.8	97.1	97.9						
646.9	96.7	97.2	679.2	95.9	96.2	621.7	96.4	97.9						
630.3	97.0	97.4	665.1	96.6	97.0	619.0	96.7	97.9						
624.0	97.2	97.5	661.4	96.3	97.0	617.6	97.8	98.1						
621.8	96.7	97.5	657.9	96.3	97.0	609.3	98.3	98.9						
618.3	96.8	97.5	653.5	96.7	97.0	605.9	97.5	98.9						
617.1	97.7	97.8	624.8	97.2	97.4	602.7	97.5	98.9						
607.2	98.2	98.7	622.0	96.4	97.4	600.9	99.1	99.3						
605.0	97.4	98.7	619.6	96.6	97.4	591.2	99.2	99.7						
600.9	98.1	98.6	617.6	97.8		588.7	98.6	99.7						
600.2	98.9	99.1	607.9	98.4	98.7	585.3	99.2	99.8						
591.1	99.3	99.5	605.0	97.6	98.8	553.9	100.6	101.4						
582.1	99.5	99.9	601.6	98.1	98.7	530.1	101.0	101.8						
573.3	99.8	100.1	599.8	98.9		525.3	100.6	101.8						

	2014	2014	2015	2016	2017
Avg. Water Surface Slope	0.0321	0.0321	0.0321		
Riffle Length	41	34	27		
Avg. Riffle Slope	0.0318	0.0422	0.0413		
Pool Length	12	11	11		
Pool to Pool Spacing	51	45	40		

Proje	ect Name: UT to Ma	artins Creek (C	ontreras)		
	Cross-Se				
	Feature	: Riffle			
D ' '	34 . 1	6: ()	TF 4 1 //	2015	C 0/
Description	Material	Size (mm)	Total #	Item %	Cum %
Silt/Clay	silt/clay	0.062	6	11%	11%
	very fine sand	0.125	2	4%	14%
~ .	fine sand	0.250		0%	14%
Sand	medium sand	0.50	1	2%	16%
	coarse sand	1.00		0%	16%
	very coarse sand	2.0	2	4%	19%
	very fine gravel	4.0		0%	19%
	fine gravel	5.7		0%	19%
	fine gravel	8.0	3	5%	25%
	medium gravel	11.3	5	9%	33%
Gravel	medium gravel	16.0	3	5%	39%
	course gravel	22.3	7	12%	51%
	course gravel	32.0	12	21%	72%
	very coarse gravel	45	8	14%	86%
	very coarse gravel	64	3	5%	91%
	small cobble	90	2	4%	95%
Cobble	medium cobble	128	2	4%	98%
Copple	large cobble	180	1	2%	100%
	very large cobble	256		0%	100%
	small boulder	362		0%	100%
D 11	small boulder	512		0%	100%
Boulder	medium boulder	1024		0%	100%
	large boulder	2048		0%	100%
Bedrock	bedrock	40096		0%	100%
TOTAL % of w	hole count		57	100%	100%

Summary I	Data
D16	1.042
D35	12.39
D50	21.5
D84	43
D95	92

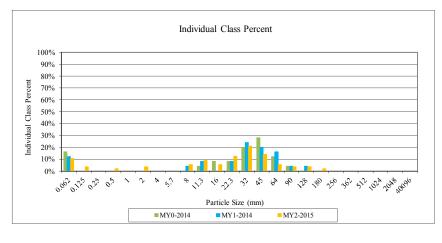


Table 10a. Baseline Stream Data Summary (UT -1 to Martin's Creek) UT to Martin's Creek Mitigation Project - DMS Project Number 92766

Parameter	Gauge]	Regional C	urve	Pre-F	Existing	Condit	ion (UT	-1)		Reference	Reach(es) Data		Des	sign (UT-	-1)		Monito	oring Ba	seline	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Max	Med	Min	Mean	Med	Max	SD
BF Width (ft)					9.2			16.9		11.7			21.7		12.5	15.0		11.7	12.3	12.2	13.8	0.7
Floodprone Width (ft)					31.0			51.0		20			410		50	100		50	71	50	100	27
BF Mean Depth (ft)					1.0			1.6		0.6			1.0		1.0	1.2		0.9	1.0	1.1	1.1	0.1
BF Max Depth (ft)					2.1			2.6		0.9			2.5		1.2	1.7		1.5	1.7	1.7	1.8	0.2
BF Cross Sectional Area (ft ²)					12.8			18.8		10.2			13.1		12.5	18.0		11.5	12.7	12.8	14.7	1.2
Width/Depth Ratio					6.0			17.6		10.7			17.0		12.5	12.5		10.6	11.9	11.7	13.7	1.0
Entrenchment Ratio					>2.4			>5		1.7			32.0		3.5	7.7		4.1	5.8	5.8	8.5	2.1
Bank Height Ratio					1.1			1.7		1.0			1.0		1.0	1.0			1.0	1.0		
Profile																						
Riffle length (ft)																	5	33	35	55	12.2	
Riffle slope (ft/ft)					0.2000						1.9000		0.0140	0.0140		0.0000	0.0107	0.0115	0.0230	0.0053		
Pool length (ft)																		10.0	40.0	36.0	82.0	17.4
Pool Max depth (ft)										2.2			2.5		2.0	3.6		2.3	2.6	2.7	2.8	0.2
Pool spacing (ft)										48.0			231.0		50.0	105.0		10.0	66.0	70.0	118.0	31.0
Pattern																						
Channel Beltwidth (ft)										16			55		19	60		19			60	
Radius of Curvature (ft)										28			47		23	53		23			53	
Rc:Bankfull width (ft/ft)										2			3		1.8	3.5		1.8			3.5	
Meander Wavelength (ft)										70			260		87.5	180		87.5			180	
Meander Width ratio										4.4			17.6		7	12		7			12	
Transport parameters																						
Reach Shear Stress (competency) lbs/ft ²								l .														
Max part size (mm) mobilized at bankfull																						
Stream Power (transport capacity) W/m ²																						
Additional Reach Parameters								ı														
Rosgen Classification						В	c/Cc/E				-	Aa/Bc				С				Е		
Bankfull Velocity (fps)					Bc/Cc/E 3.6 - 4.2					<u> </u>	10.150				3.5 - 4.2							
Bankfull Discharge (cfs)					3.6 - 4.2 46 - 60																	
Valley Length (ft)					40 - 00																	
Channel Thalweg Length (ft)																		3180				
Sinuosity					1.17					1.19				1.5				1.5				
Water Surface Slope (ft/ft)					0.0075					0	0.0333				0.0058				0.0069			
BF slope (ft/ft)					0.0073																	
Bankfull Floodplain Area (acres)																						
% of Reach with Eroding Banks																						
Channel Stability or Habitat Metric																						
Biological or Other																						

Table 10b. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) UT to Martin's Creek Mitigation Project - DMS Project Number 92766

Parameter	Ri%/RU%P%G%/S% SC%/SA%/G%/C%/B%BE%										ce Reach(e	s) Data	1			Design			Mo	nitori	ng Base	eline	
Ri%/RU%P%G%/S%																							
SC%/SA%/G%/C%/B%BE%																							
d16/d35/d50/d84/d95		12.6	17.9	72.3	84.0																		
Entrainment Class <1.5/1.5-1.99/2.0-4.9/5.0-																							
Incision Class <1.2/1.2-1.49/1.5-1.99/>2.0																							

Table 10c. Baseline Stream Data Summary (UT 1-1 and UT 1-2 to Martin's Creek) UT to Martin's Creek Mitigation Project - DMS Project Number 92766

Parameter	Gauge]	Regional C	urve		Pre-Ex	isting C	ondition	ı		Reference	Reach(es) Data			Design			Monit	oring Ba	seline	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Max	Med	Min	Mean	Med	Max	SD
BF Width (ft)					4.5			6.7		11.7			21.7				4.5		2.9			
Floodprone Width (ft)					5.4			8.5		20			410				13.5		14			
BF Mean Depth (ft)					0.3			0.4		0.6			1.0				0.4		0.5			
BF Max Depth (ft)					0.5			1.0		0.9			2.5				0.5		0.7			
BF Cross Sectional Area (ft2)					1.5			2.4		10.2			13.1				1.7		1.4			
Width/Depth Ratio					13.2			18.9		10.7			17.0				12.0		6.0			
Entrenchment Ratio					1.2			1.6		1.7			32.0				3.0		4.8			
Bank Height Ratio					1.0			4.4		1.0			1.0				1.0		1.0			
Profile																						
Riffle length (ft)																		5	24	15	67	21
Riffle slope (ft/ft)										0.2000			1.9000				0.0140	0.0000	0.0357	0.0332	0.1101	0.0245
Pool length (ft)																	4.0	8.0	8.0	14.0	2.3	
Pool Max depth (ft)					2.2				2.2			2.5				0.8						
Pool spacing (ft)					48.0				48.0			231.0				32.0	6.0	32.0	23.0	78.0	22.0	
Pattern										•	•				•							
Channel Beltwidth (ft)									16			55										
Radius of Curvature (ft)					16			28			47				34			34		1		
Rc:Bankfull width (ft/ft)										2			3				7.6			7.6		1
Meander Wavelength (ft)										70			260									1
Meander Width ratio										4.4			17.6									
Transport parameters						1	T	1			1	1				T	Г	_	1			_
Reach Shear Stress (competency) lbs/ft ²						<u> </u>		<u> </u>											<u> </u>			
Max part size (mm) mobilized at bankfull																						
Stream Power (transport capacity) W/m ²																						
Additional Reach Parameters																						
Rosgen Classification					С					Aa/Bc				С				Е				
Bankfull Velocity (fps)					3.5 - 4.1										3.5 - 4.1							
Bankfull Discharge (cfs)					6.0 - 7.0																	
Valley Length (ft)																						
Channel Thalweg Length (ft)					102 108													580				
Sinuosity					1.02 - 1.08					1.19		,		1.03				1.03				
Water Surface Slope (ft/ft)					0.0096 - 0.0333					0.0333			0.00	096 - 0.03	333			0.0383				
BF slope (ft/ft)																						
Bankfull Floodplain Area (acres)																						
% of Reach with Eroding Banks																						
Channel Stability or Habitat Metric																						
Biological or Other																						

Table 10d. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) UT to Martin's Creek Mitigation Project - DMS Project Number 92766

Parameter	Ri%/RU%P%G%/S% SC%/SA%/G%/C%/B%BE%										ice Reach(es) Data			Design			Mo	nitor	ing Ba	seline	
Ri%/RU%P%G%/S%																						
SC%/SA%/G%/C%/B%BE%																						
d16/d35/d50/d84/d95																						
Entrainment Class <1.5/1.5-1.99/2.0-4.9/5.0-																						
Incision Class <1.2/1.2-1.49/1.5-1.99/>2.0																						

Table 10e. Baseline Stream Data Summary (UT 1-3 to Martin's Creek) UT to Martin's Creek Mitigation Project - DMS Project Number 92766

Parameter	Gauge]	Regional C	urve		Pre-Ex	isting C	ondition	1		Reference	Reach(es) Data			Design			Monit	oring Ba	seline	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Max	Med	Min	Mean	Med	Max	SD
BF Width (ft)					6.3			14.3		11.7			21.7				6.5	5.9	6.6	6.6	7.3	1
Floodprone Width (ft)					10.2			32.6		20			410				14.0		25	25		
BF Mean Depth (ft)					0.2			0.5		0.6			1.0				0.5	0.4	0.5	0.5	0.5	0.1
BF Max Depth (ft)					0.8			1.0		0.9			2.5				0.7	0.9	1.0	1.0	1.0	0.1
BF Cross Sectional Area (ft ²)					3.2			3.5		10.2			13.1				3.5	2.7	3.2	3.2	3.6	0.6
Width/Depth Ratio					12.5			58.6		10.7			17.0				12.0	14.6	14.7	14.7	14.8	0.1
Entrenchment Ratio					>1.6			2.3		1.7			32.0				2.2	3.4	3.8	3.8	4.2	0.6
Bank Height Ratio					1.2			1.3		1.0			1.0				1.0		1.0	1.0		
Profile		•					•					•				•				•	•	
Riffle length (ft)																	4	41	22	173	44	
Riffle slope (ft/ft)					0.200				0.2000			1.9000				0.0140	0.0047	0.0318	0.0326	0.0913	0.0218	
Pool length (ft)																	5.0	12.0	7.0	50.0	11.0	
Pool Max depth (ft)										2.2			2.5				1.1					
Pool spacing (ft)										48.0			231.0				45.0	11.0	51.0	31.0	178.0	43.0
Pattern																						
Channel Beltwidth (ft)									16			55										
Radius of Curvature (ft)										28			47									
Rc:Bankfull width (ft/ft)										2			3									
Meander Wavelength (ft)										70			260									
Meander Width ratio										4.4			17.6									
Transport parameters																						
Reach Shear Stress (competency) lbs/ft ²						T T										1			1	1	1	
Max part size (mm) mobilized at bankfull																						
Stream Power (transport capacity) W/m ²																						+
Additional Reach Parameters												1								<u> </u>	<u> </u>	
Rosgen Classification						В						Aa/Bc				В		T		C/E		
Bankfull Velocity (fps)			1			B 2.5 - 2.9						i ita Be				2.3						
Bankfull Discharge (cfs)							8.0 - 10.															
Valley Length (ft)							0.0 10.															
Channel Thalweg Length (ft)																				813		
Sinuosity							1.08					1.19				1.08				1.08		
Water Surface Slope (ft/ft)							0.0275					0.0333				0.0275				0.0321		
BF slope (ft/ft)																						
Bankfull Floodplain Area (acres)																						
% of Reach with Eroding Banks																						
Channel Stability or Habitat Metric			, and the second													, and the second					,	
Biological or Other																						

Table 10f. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) UT to Martin's Creek Mitigation Project - DMS Project Number 92766

	•																			
Parameter		Pre-Exis	ting Condit	ion			Referen	ice Reach(es) Data			Design			Mo	onitor	ring Ba	aselin	e	
Ri%/RU%P%G%/S%																				
SC%/SA%/G%/C%/B%BE%																				
d16/d35/d50/d84/d95																				
Entrainment Class <1.5/1.5-1.99/2.0-4.9/5.0-																				
Incision Class <1.2/1.2-1.49/1.5-1.99/>2.0														,						

Table 11a. Monitoring Data - Dimensional Morphology Summary (Dimensional Parameters - Cross Sections)
UT to Martin's Creek Mitigation Project - DMS Project Number 92766

				oss Sectio			•		•		Cross Secti					•		Cross Sec			•		•		Cross Sect			-				ross Secti			,			•	Cross Section	
Parameter			Į	T - 1 Riff	le						UT - 1 Ri	ffle						UT - 1 l	Pool						UT - 1 Ri	Riffle						UT - 1 Rif	ffle						UT - 1 Po	ol
																																								4
Dimension		MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2		3 MY4	MY5	MY5+	MY0	MY1	MY2	MY3	3 MY	74 MY	75 MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4
BF Width (ft)	11.7	11.4	11.9					12.5	12.7	12.6					16.4	17.4	17.9					13.8	13.3	14.0					12.1	11.3	13.4					13.0	12.8	12.2		
Floodprone Width (ft) (approx)	100.0	100.0	100.0					100.0	100.0	100.0					NA	NA	NA					100.0	100.0	100.0					50.0	50.0	50.0					NA	NA	NA		
BF Mean Depth (ft)	1.1	1.1	1.0					1.1	1.1	1.0					1.2	1.2	1.2					1.1	1.1	1.0					1.1	1.1	0.9					1.4	1.4	1.3		T
BF Max Depth (ft)	1.7	1.7	1.7					1.8	1.8	1.8					2.5	2.7	2.7					1.8	1.9	1.7					1.8	1.8	2.0					2.8	2.6	2.6		
BF Cross Sectional Area (ft ²)	13.3	12.7	12.4					13.4	13.4	13.1					19.9	21.6	21.2					14.7	14.7	13.5					12.8	12.1	11.8					18.3	18.0	16.3		
Width/Depth Ratio	10.3	10.2	11.4					11.7	12.0	12.1					NA	NA	NA					13.0	12.0	14.5					11.4	10.6	15.2					NA	NA	NA		1
Entrenchment Ratio	8.5	8.8	8.4					8.0	7.9	7.9					NA	NA	NA					7.2	7.5	7.1					4.1	4.4	3.7					NA	NA	NA		
Bank Height Ratio	1.0	1.0	1.0					1.0	1.0	1.0					1.0	1.0	1.0					1.0	1.0	1.0					1.0	1.0	1.0					1.0	1.0	1.0		T
d50 (mm)																													28.6	29.1	21.5									T
			Cı	oss Sectio	n 7						Cross Secti	ion 8						Cross Sec	ction 9					C	ross Secti	tion 10					Cı	ross Sectio	on 11							
Parameter			Į	T - 1 Riff	le						UT - 1 Ri	ffle						UT - 1 l	Pool						UT - 1 P	Pool						UT - 1 Rif	ffle							
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY:	3 MY4	MY5	MY5+	MY0	MY1	MY2	MY3	3 MY	'4 MY	75 MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+					
BF Width (ft)		12.8	11.7					12.2	12.1	11.9					9.4	9.2	10.0					9.6	10.1	9.5					12.3	12.3	11.9									
Floodprone Width (ft) (approx	50.0	50.0	50.0					50.0	50.0	50.0					NA	NA	NA					NA	NA	NA					50.0	50.0	50.0									
BF Mean Depth (ft)	1.0	0.9	0.8					1.0	0.9	0.9					1.6	1.6	1.7					1.8	1.8	1.8					0.9	0.9	0.7									
BF Max Depth (ft)	1.5	1.4	1.3					1.5	1.6	1.5					2.3	2.2	2.2					2.8	2.9	2.7					1.5	1.6	1.5									
BF Cross Sectional Area (ft ²)	11.7	11.1	9.0					11.8	11.2	11.1					15.5	15.0	16.6					17.0	18.3	17.5					11.5	11.0	8.0									
Width/Depth Ratio	11.7	14.8	15.2					12.6	13.1	12.8					NA	NA	NA					NA	NA	NA					13.2	13.8	17.7									
Entrenchment Ratio	4.3	3.9	4.3					4.1	4.1	4.2					NA	NA	NA					NA	NA	NA					4.1	4.1	4.2									
Bank Height Ratio	1.0	1.0	1.0					1.0	1.0	1.0					1.0	1.0	1.0					1.0	1.0	1.0					1.0	1.0	1.0					1				
Dalik ricigiit Katio	1.0																																							

MY5 MY5+

Table 11b. Monitoring Data - Stream Reach Data Summary
UT to Martin's Creek Mitigation Project - DMS Project Number 92766

UT to Martin's Creek Mitigation Project	ct - DMS	Project N	umber 92	766																											
Parameter		Ba	seline (UT	`-1)			M	Y-1 (UT -	1)			M	Y-2 (UT -	1)			M	IY-3 (UT -	- 1)			M	IY-4 (UT -	4 (UT - 1	l)			M	Y-5 (UT -	1)	
Dimension and Substrate - Riffle Only	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Med	Max	SD	Min	Mean	Med	Max	SD
BF Width (ft)	11.7	12.3	12.2	13.8	0.7	11.3	12.3	12.3	13.3	0.7	11.7	12.5	11.9	14	0.9																
Floodprone Width (ft)	50	71	50	100	27	50	71	50	100	27	50	71	50	100	27																
BF Mean Depth (ft)	0.9	1.0	1.1	1.1	0.1	0.9	1.0	1.1	1.1	0.1	0.7	0.9	0.9	1.0	0.1																
BF Max Depth (ft)	1.5	1.7	1.7	1.8	0.2	1.4	1.7	1.7	1.9	0.2	1.3	1.6	1.7	2.0	0.2																1
BF Cross Sectional Area (ft ²)	11.5	12.7	12.8	14.7	1.2	11.0	12.3	12.1	14.7	1.4	8.0	11.3	11.8	13.5	2.1																1
Width/Depth Ratio	10.6	11.9	11.7	13.7	1.0	10.3	12.2	12.1	14.2	1.6	11.9	14.0	14.0	17.0	1.7																
Entrenchment Ratio	4.1	5.8	5.8	8.5	2.1	3.9	5.8	5.8	8.8	2.1	3.7	5.7	5.7	8.4	2.0																
Bank Height Ratio		1.0	1.0				1.0	1.0				1.0	1.0																		
Profile - UT -1																		•	•												
Riffle length (ft)	5	33	35	55	12.2	10	32	32	60	13	7	31	32	57	12																
Riffle slope (ft/ft)	0.0000	0.0107	0.0115	0.0230	0.0053	0.0000	0.0118	0.0127	0.0250	0.0059	0.0000	0.0117	0.0116	0.0300	0.0060																
Pool length (ft)	10	40	36	82	17	12	42	37	88	20	11	39	35	88	20																
Pool Max depth (ft)	2.3	2.6	2.7	2.8	0.2	2.2	2.6	2.7	2.9	0.3	1.3	1.6	1.7	2.0	0.2																
Pool spacing (ft)	10	66	70	118	31	12	71	72	118	28	11	64	59	121	30																
Pattern																															
Channel Beltwidth (ft	19			60																											
Radius of Curvature (ft)	23			53																											
Rc:Bankfull width (ft/ft)	1.8			3.5																											
Meander Wavelength (ft)	87.5			180																											4
Meander Width ratio	7			12																											
Additional Reach Parameters																															
Rosgen Classification			E-Type					Ec-Type					Ec-Type																		
Channel Thalweg Length (ft			3180					3184					3155																		
Sinuosity			1.5					1.5					1.5																		
Water Surface Slope (Channel) (ft/ft)			0.0069					0.0066					0.0069																		
BF slope (ft/ft)																															
Ri%/RU%P%G%/S%																															
SC%/SA%/G%/C%/B%BE%																						Ì	Ì								1
d16/d35/d50/d84/d95																						1	1								
% of Reach with Eroding Banks																	•	•	•						-						-
Channel Stability or Habitat Metric																															
Biological or Other																															

Table 11c. Monitoring Data - Dimensional Morphology Summary (Dimensional Parameters - Cross Sections)

UT to Martin's Creek Mitigation Project - DMS Project Number 92766

			Cro	oss Section	n 12		
Parameter			U	T 1 -1 Rif	fle		
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY5+
BF Width (ft)	2.9	3.2	3.6				
Floodprone Width (ft) (approx)	14.0	14.0	14.0				
BF Mean Depth (ft)	0.5	0.4	0.4				
BF Max Depth (ft)	0.7	0.6	0.7				
BF Cross Sectional Area (ft²)	1.4	1.3	1.5				
Width/Depth Ratio	6.0	7.9	8.6				
Entrenchment Ratio	4.8	4.4	3.9				
Bank Height Ratio	1.0	1.0	1.0				
d50 (mm)							

Table 11d. Monitoring Data - Stream Reach Data Summary

UT to Martin's Creek Mitigation Project - DMS Project Number 92766

Parameter		Base	eline (UT 1	1 - 1)			MY	-1 (UT 1	- 1)			MY	/- 2 (UT 1	- 1)			MY	Y-3 (UT 1	- 1)			MY	'-4 (UT 1 ·	- 1)			MY	7-5 (UT 1	- 1)	
						-															-				·					
Dimension and Substrate - Riffle Only	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD
BF Width (ft)		2.9					3.2					3.6																		
Floodprone Width (ft)		14					14					14																		
BF Mean Depth (ft)		0.5					0.4					0.4																		
BF Max Depth (ft)		0.7					0.6					0.7																		
BF Cross Sectional Area (ft²)		1.4					1.3					1.5																		
Width/Depth Ratio		6.0					8.0					8.9																		
Entrenchment Ratio		4.8					4.4					3.9																		
Bank Height Ratio		1.0					1.0					1.0																		
Profile - UT 1 - 1																														
Riffle length (ft)	5	24	15	67	21	7	26	17	67	21	5	19	15	66	17															
	0.0000	0.0357	0.0332	0.1101	0.0245	0.0104	0.0306	0.0308	0.0555	0.0143	0.0017	0.0392	0.0364	0.0936	0.0218															
Pool length (ft)	4	8	8	14	2	6	9	8	17	3	5	10	8	19	4															
Pool Max depth (ft)																														
Pool spacing (ft)	6	32	23	78	22	6	34	24	78	21	7	27	24	75	16															
Pattern																														
Channel Beltwidth (ft)																														
Radius of Curvature (ft)			34																											
Rc:Bankfull width (ft/ft)			7.6																											
Meander Wavelength (ft)																														
Meander Width ratio																														
Additional Reach Parameters						_															_									
Rosgen Classification			E-type					E-type					E-type																	
Channel Thalweg Length (ft)			580					576					595																	
Sinuosity			1.03					1.03					1.03																	
Water Surface Slope (Channel) (ft/ft)			0.0383					0.0385					0.0381																	
BF slope (ft/ft)																														
Ri%/RU%P%G%/S%																														
SC%/SA%/G%/C%/B%BE%																														
d16/d35/d50/d84/d95																														
% of Reach with Eroding Banks																														
Channel Stability or Habitat Metric																									-					
Biological or Other																														

Table 11e. Monitoring Data - Dimensional Morphology Summary (Dimensional Parameters - Cross Sections)

UT to Martin's Creek Mitigation Project - DMS Project Number 92766

			Cro	oss Section	n 13					Cre	oss Section	n 14		
Parameter			U'.	Γ 1 - 3 Rif	ffle					U'	T 1 - 3 Rif	ffle		
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+
BF Width (ft)	5.9	5.6	4.7					7.3	7.8	8.1				
Floodprone Width (ft) (approx)	25.0	25.0	25.0					25.0	25.0	25.0				
BF Mean Depth (ft)	0.5	0.4	0.4					0.5	0.4	0.4				
BF Max Depth (ft)	0.9	0.7	0.7					1.0	0.8	1.0				
BF Cross Sectional Area (ft ²)	2.7	2.1	1.7					3.6	3.2	3.4				
Width/Depth Ratio	12.9	14.9	13.0					14.8	19.0	19.3				
Entrenchment Ratio	4.2	4.5	5.3					3.4	3.2	3.1				
Bank Height Ratio	1.0	1.0	1.0					1.0	1.0	1.0				
d50 (mm)														

Table 11f. Monitoring Data - Stream Reach Data Summary

UT to Martin's Creek Mitigation Project - DMS Project Number 92766

UT to Martin's Creek Mitigation Project	3201					1		7 4 /FIFE 4	2)			7.77	7. A. (TITE 1	2)				7. A. (FIFE 1	2)					2)		1		7 = (TIP) 1	2)	
Parameter		Base	eline (UT	1 - 3)		<u> </u>	MY	7-1 (UT 1	- 3)			MY	7-2 (UT 1	- 5)			MY	7-3 (UT 1	- 5)			MY	Y-4 (UT 1	- 3)			MY	Y-5 (UT 1	- 3)	
		_		1		•	1		•	•		•										•	1	•	•		•	•		1
Dimension and Substrate - Riffle Only	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD
BF Width (ft)	5.9	6.6	6.6	7.3	1	5.6	6.7	6.7	7.8	1.6	4.7	6.4	6.4	8.1	2.4															
Floodprone Width (ft)		25	25				25	25				25	25																	
BF Mean Depth (ft)	0.4	0.5	0.5	0.5	0.1	0.4	0.4	0.4	0.4		0.4	0.4	0.4	0.4	0.0															
BF Max Depth (ft)		1.0	1.0	1.0	0.1	0.7	0.8	0.8	0.8	0.1	0.7	0.9	0.9	1.0	0.2															
BF Cross Sectional Area (ft ²)	2.7	3.2	3.2	3.6	0.6	2.1	2.7	2.7	3.2	0.8	1.7	2.6	2.6	3.4	1.2															
Width/Depth Ratio	14.6	14.7	14.7	14.8	0.1	14.0	16.8	16.8	19.5	3.9	11.8	16.0	16.0	20.3	6.0															
Entrenchment Ratio	3.4	3.8	3.8	4.2	0.6	3.2	3.8	3.8	4.5	0.9	3.1	4.2	4.2	5.3	1.6															
Bank Height Ratio		1.0	1.0				1.0	1.0				1.0	1.0																	
Profile - UT 1 - 3																														
Riffle length (ft)	4	41	22	173	44	4	34	30	147	35	8	27	18	138	30															
Riffle slope (ft/ft)	0.0047	0.0318	0.0326	0.0913	0.0218	0.0139	0.0422	0.0324	0.1479	0.0353	0.0185	0.0413	0.0343	0.1077	0.0243															
Pool length (ft)	5	12	7	50	11	4	11	8	31	8	5	11	8	21	5															
Pool Max depth (ft)																														
Pool spacing (ft)	11	51	31	178	43	12	45	40	153	35	10	37	27	145	32															
Pattern																														
Channel Beltwidth (ft)																														
Radius of Curvature (ft)																														
Rc:Bankfull width (ft/ft)																														
Meander Wavelength (ft)																														
Meander Width ratio																														
Additional Reach Parameters																														
Rosgen Classification			C/E type	;				C/E type					C/E type																	
Channel Thalweg Length (ft)			813					814					822																	
Sinuosity			1.08					1.08					1.08																	
Water Surface Slope (Channel) (ft/ft)			0.0321					0.0321					0.0321																	
BF slope (ft/ft)																														
Ri%/RU%P%G%/S%														<u> </u>																
SC%/SA%/G%/C%/B%BE%																														
d16/d35/d50/d84/d95																														
% of Reach with Eroding Banks																														
Channel Stability or Habitat Metric																														
Biological or Other														·			-										-			

APPENDIX E HYDROLOGY DATA

Table 12. Verification of Bankfull Events

Table 12. Verification of Bankfull Events

UT to Martin's Creek (Contreras) Mitigation Site (DMS Project Number 92766)

Date of Data Collection	Date of Occurrence	Method	Photo (if available)
August 25, 2014	April 7, 2014	Crest gauge data indicates a bankfull event after approximately 2.4 inches of rain documented in one day at a nearby rain gauge.	
August 25, 2014	July 1, 2014	Crest gauge data indicates a bankfull event after approximately 2.02 inches of rain was documented over two days at a nearby rain gauge.	
August 25, 2014	August 24, 2014	Crest gauge data indicates a bankfull event after approximately 1.39 inches of rain documented over two days at a nearby rain gauge. Wrack and laid-back vegetation were also observed.	1
October 27, 2014	September 3, 2014	Crest gauge data indicates a bankfull event after approximately 1.67 inches of rain documented in one day at a nearby rain gauge.	
October 27, 2014	October 14, 2014	Crest gauge data and wrack observed indicate a bankfull event after approximately 2.5 inches of rain documented in one day at a nearby rain gauge.	2
April 12, 2015	November 17, 2014	Crest gauge data indicates a bankfull event after approximately 1.44 inches of rain documented in one day at a nearby rain gauge.	
July 13, 2015	June 11, 2015	Crest gauge data and laid back vegetation in the floodplain of UT1 indicate a bankfull event after approximately 1.68 inches of rain documented in one day at a nearby rain gauge.	
July 13, 2015	June 26, 2015	Crest gauge data indicates a bankfull event after approximately 1.57 inches of rain was documented in one day at a nearby rain gauge.	3
September 11, 2015	August 19, 2015	Crest gauge data indicates a bankfull event after approximately 2.94 inches of rain was documented over three days at a nearby rain gauge.	
November 18, 2015	September 26, 2015	Crest gauge data indicates a bankfull event after approximately 2.65 inches of rain was documented over two days at a nearby rain gauge.	
November 18, 2015	October 3, 2015	Crest gauge data indicates a bankfull event after approximately 4.50 inches of rain was documented over three days at a nearby rain gauge.	

